IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v99y2012icp192-197.html
   My bibliography  Save this article

Kinetic modelling of batch ethanol production from sugar beet raw juice

Author

Listed:
  • Dodić, Jelena M.
  • Vučurović, Damjan G.
  • Dodić, Siniša N.
  • Grahovac, Jovana A.
  • Popov, Stevan D.
  • Nedeljković, Nataša M.

Abstract

This study examines the kinetics of a batch fermentation process of raw juice, an intermediate product of sugar beet processing, by free Saccharomyces cerevisiae yeast cells, with the aim of producing bioethanol. Defining the kinetics and kinetic parameters of this bioprocess may be regarded as an important step towards translating it to industrial scales (scale-up). The optimal values of the kinetic parameters were determined by fitting the models into the experimental data, i.e. by minimising the discrepancy between the model predictions and corresponding experimental data. The growth of yeast cells could be expressed by a logistic function model, which describes the growth as a function of initial biomass concentration, fermentation time, specific growth rate and final biomass concentration. The modified Gompertz model, which gives the bioethanol production lag time, the maximum bioethanol production rate and the maximum bioethanol concentration, was able to describe the formation of bioethanol as the fermentation proceeded. These models thus can be employed for further development of the bioethanol production process from sugar beet raw juice.

Suggested Citation

  • Dodić, Jelena M. & Vučurović, Damjan G. & Dodić, Siniša N. & Grahovac, Jovana A. & Popov, Stevan D. & Nedeljković, Nataša M., 2012. "Kinetic modelling of batch ethanol production from sugar beet raw juice," Applied Energy, Elsevier, vol. 99(C), pages 192-197.
  • Handle: RePEc:eee:appene:v:99:y:2012:i:c:p:192-197
    DOI: 10.1016/j.apenergy.2012.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912003649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Yishui & Zhao, Lixin & Meng, Haibo & Sun, Liying & Yan, Jinyue, 2009. "Estimation of un-used land potential for biofuels development in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 77-85, November.
    2. Behera, Shuvashish & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2010. "Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis," Applied Energy, Elsevier, vol. 87(7), pages 2352-2355, July.
    3. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z. & Golusin, Mirjana T., 2010. "An overview of biomass energy utilization in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 550-553, January.
    4. Dodic, Sinisa N. & Vucurovic, Damjan G. & Popov, Stevan D. & Dodic, Jelena M. & Zavargo, Zoltan Z., 2010. "Concept of cleaner production in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1629-1634, August.
    5. Behera, Shuvashish & Kar, Shaktimay & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2010. "Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices," Applied Energy, Elsevier, vol. 87(1), pages 96-100, January.
    6. Zheng, Yi & Yu, Chaowei & Cheng, Yu-Shen & Lee, Christopher & Simmons, Christopher W. & Dooley, Todd M. & Zhang, Ruihong & Jenkins, Bryan M. & VanderGheynst, Jean S., 2012. "Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production," Applied Energy, Elsevier, vol. 93(C), pages 168-175.
    7. Behera, Shuvashish & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2011. "Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs," Applied Energy, Elsevier, vol. 88(1), pages 212-215, January.
    8. Nguyen, Thu Lan T. & Hermansen, John E. & Sagisaka, Masayuki, 2009. "Fossil energy savings potential of sugar cane bio-energy systems," Applied Energy, Elsevier, vol. 86(Supplemen), pages 132-139, November.
    9. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z., 2009. "Potential development of bioethanol production in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2722-2727, December.
    10. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z., 2009. "Potential contribution of bioethanol fuel to the transport sector of Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2197-2200, October.
    11. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z., 2010. "Biomass energy in Vojvodina: Market conditions, environment and food security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 862-867, February.
    12. Dodic, Sinisa N. & Vucurovic, Damjan G. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A., 2010. "Cleaner bioprocesses for promoting zero-emission biofuels production in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3242-3246, December.
    13. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    14. Rattanapan, Anuchit & Limtong, Savitree & Phisalaphong, Muenduen, 2011. "Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons," Applied Energy, Elsevier, vol. 88(12), pages 4400-4404.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Senqing & Xiao, Zeyi & Li, Minghai & Li, Sizhong, 2016. "Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production," Applied Energy, Elsevier, vol. 179(C), pages 939-947.
    2. Li, Xinzhe & Dong, Yufeng & Chang, Lu & Chen, Lifan & Wang, Guan & Zhuang, Yingping & Yan, Xuefeng, 2023. "Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model," Renewable Energy, Elsevier, vol. 205(C), pages 574-582.
    3. Chohan, Naseeha A. & Aruwajoye, G.S. & Sewsynker-Sukai, Y. & Gueguim Kana, E.B., 2020. "Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment," Renewable Energy, Elsevier, vol. 146(C), pages 1031-1040.
    4. Abdi Hanra Sebayang & Masjuki Haji Hassan & Hwai Chyuan Ong & Surya Dharma & Arridina Susan Silitonga & Fitranto Kusumo & Teuku Meurah Indra Mahlia & Aditiya Harjon Bahar, 2017. "Optimization of Reducing Sugar Production from Manihot glaziovii Starch Using Response Surface Methodology," Energies, MDPI, vol. 10(1), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dodić, Siniša N. & Vasiljević, Tamara Zelenović & Marić, Radenko M. & Kosanović, Aleksandar J. Radukin & Dodić, Jelena M. & Popov, Stevan D., 2012. "Possibilities of application of waste wood biomass as an energy source in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2355-2360.
    2. Bajić, Bojana Ž. & Dodić, Siniša N. & Vučurović, Damjan G. & Dodić, Jelena M. & Grahovac, Jovana A., 2015. "Waste-to-energy status in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1437-1444.
    3. Dodic, Sinisa N. & Zekic, Vladislav N. & Rodic, Vesna O. & Tica, Nedeljko Lj. & Dodic, Jelena M. & Popov, Stevan D., 2011. "Analysis of energetic exploitation of straw in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1147-1151, February.
    4. Dodic, Sinisa N. & Vucurovic, Damjan G. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A., 2010. "Cleaner bioprocesses for promoting zero-emission biofuels production in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3242-3246, December.
    5. Dodic, Sinisa N. & Zekic, Vladislav N. & Rodic, Vesna O. & Tica, Nedeljko Lj. & Dodic, Jelena M. & Popov, Stevan D., 2010. "Situation and perspectives of waste biomass application as energy source in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3171-3177, December.
    6. Cvetković, Slobodan & Kaluđerović Radoičić, Tatjana & Vukadinović, Bojana & Kijevčanin, Mirjana, 2014. "Potentials and status of biogas as energy source in the Republic of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 407-416.
    7. Rattanapan, Anuchit & Limtong, Savitree & Phisalaphong, Muenduen, 2011. "Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons," Applied Energy, Elsevier, vol. 88(12), pages 4400-4404.
    8. Đerčan, Bojan & Lukić, Tamara & Bubalo-Živković, Milka & Đurđev, Branislav & Stojsavljević, Rastislav & Pantelić, Milana, 2012. "Possibility of efficient utilization of wood waste as a renewable energy resource in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1516-1527.
    9. Dodic, Sinisa N. & Vucurovic, Damjan G. & Popov, Stevan D. & Dodic, Jelena M. & Zavargo, Zoltan Z., 2010. "Concept of cleaner production in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1629-1634, August.
    10. Wirawan, Ferdian & Cheng, Chieh-Lun & Kao, Wei-Chen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis," Applied Energy, Elsevier, vol. 100(C), pages 19-26.
    11. Ntihuga, Jean Nepomuscene & Senn, Thomas & Gschwind, Peter & Kohlus, Reinhard, 2013. "An evaluation of different bioreactor configurations for continuous bio-ethanol production," Applied Energy, Elsevier, vol. 108(C), pages 194-201.
    12. Mojović, Ljiljana & Pejin, Dušanka & Rakin, Marica & Pejin, Jelena & Nikolić, Svetlana & Djukić-Vuković, Aleksandra, 2012. "How to improve the economy of bioethanol production in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6040-6047.
    13. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    14. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    15. Kyriakou, Maria & Chatziiona, Vasiliki K. & Costa, Costas N. & Kallis, Michalis & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2019. "Biowaste-based biochar: A new strategy for fermentative bioethanol overproduction via whole-cell immobilization," Applied Energy, Elsevier, vol. 242(C), pages 480-491.
    16. Ho, Cheng-Yu & Chang, Jui-Jen & Lee, Shih-Chi & Chin, Tsu-Yuan & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2012. "Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast," Applied Energy, Elsevier, vol. 100(C), pages 27-32.
    17. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z., 2010. "Biomass energy in Vojvodina: Market conditions, environment and food security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 862-867, February.
    18. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    19. Zhang, Caixia & Xie, Gaodi & Li, Shimei & Ge, Liqiang & He, Tingting, 2010. "The productive potentials of sweet sorghum ethanol in China," Applied Energy, Elsevier, vol. 87(7), pages 2360-2368, July.
    20. Raele, Ricardo & Boaventura, João Mauricio Gama & Fischmann, Adalberto Américo & Sarturi, Greici, 2014. "Scenarios for the second generation ethanol in Brazil," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 205-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:99:y:2012:i:c:p:192-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.