Advanced Search
MyIDEAS: Login to save this paper or follow this series

Environmental Lifecycle Assessment for Policy Decision-Making and Analysis

Contents:

Author Info

  • Rajagopal, Deepak
  • Zilberman, David

Abstract

A key argument in the societal debate against polices to support biofuels is that production of these alternative fuels may in fact consume more energy than they generate and emit more greenhouse gases than they sequester (Fargione et al., 2008; Searchinger et al., 2008; Rajagopal and Zilberman, 2007; Farrell et al., 2006; Pimentel and Patzek, 2005). Metrics like net energy value, net carbon value and net petroleum offset are the basis for comparing the various fuels and are the source of these debates. The technique that underlies the calculation of these metrics is called lifecycle assessment or lifecycle analysis (LCA). A central aspect of LCA (described in detail in the next section) is it assumes linear technologies and produces outcomes that are numbers – how many units of energy are needed to produce a liter of ethanol fuel from a ton of corn. But as basic economics suggests, under reasonable conditions of some substitution between inputs and processes in production, this ratio is not a number but a function of prices. For instance, with energy being a ubiquitous input to production, a change in the relative price of different energy sources or with respect to other inputs will induce adjustments in the form of fuel switching, substitution between capital, energy and labor etc. This switching can occur at several levels in the production chain of a commodity. This will obviously alter the net carbon indicator for a fuel in the future. Also current LCA outcomes change only if the physical quantities of various inputs such as quantity of coal or electricity used in calculating LCA change. In other words, today LCA is capable of answering, how does a 10% decrease in the share of natural gas in the average electricity mix decrease the net carbon value of ethanol? But it is not capable of answering, if natural gas prices increase by 10% what is the impact on the net carbon value of ethanol? Obviously the latter is more intuitive and useful way of framing the question than the former from a policy standpoint. In this paper, we introduce a framework which can be used to derive LCA indicators directly as a function of underlying economic parameters and make it easier to simulate the impact of policies like pollution taxes and fuel mandates which in one way or another ultimately alter the relative price of commodities. Next we provide some background on current LCA literature. We then introduce a micro-economics based LCA that integrates prices directly into the lifecycle framework. We point out some implications of our model with simple illustrations. We finally describe directions for future work.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://purl.umn.edu/49090
Download Restriction: no

Bibliographic Info

Paper provided by Farm Foundation in its series Lifecycle Carbon Footprint of Biofuels Workshop, January 29, 2008, Miami Beach, Florida with number 49090.

as in new window
Length:
Date of creation: 2008
Date of revision:
Handle: RePEc:ags:fflc08:49090

Contact details of provider:
Postal: 1211 West 22nd St., Suite 216, Oak Brook, IL 60523-2197
Phone: (630) 571-9393
Fax: (630) 571-9580
Web page: http://www.farmfoundation.org/
More information through EDIRC

Related research

Keywords: Environmental Economics and Policy;

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Thompson, Wyatt & Whistance, Jarrett & Meyer, Seth, 2011. "Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions," Energy Policy, Elsevier, vol. 39(9), pages 5509-5518, September.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ags:fflc08:49090. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.