IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i12p9305-9342d43569.html
   My bibliography  Save this article

Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles

Author

Listed:
  • Nuri Cihat Onat

    (Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA)

  • Murat Kucukvar

    (Department of Industrial Engineering, Istanbul Sehir University, Istanbul 34662, Turkey)

  • Omer Tatari

    (Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA)

Abstract

Sustainable transportation and mobility are key components and central to sustainable development. This research aims to reveal the macro-level social, economic, and environmental impacts of alternative vehicle technologies in the U.S. The studied vehicle technologies are conventional gasoline, hybrid, plug-in hybrid with four different all-electric ranges, and full battery electric vehicles (BEV). In total, 19 macro level sustainability indicators are quantified for a scenario in which electric vehicles are charged through the existing U.S. power grid with no additional infrastructure, and an extreme scenario in which electric vehicles are fully charged with solar charging stations. The analysis covers all life cycle phases from the material extraction, processing, manufacturing, and operation phases to the end-of-life phases of vehicles and batteries. Results of this analysis revealed that the manufacturing phase is the most influential phase in terms of socio-economic impacts compared to other life cycle phases, whereas operation phase is the most dominant phase in the terms of environmental impacts and some of the socio-economic impacts such as human health and economic cost of emissions. Electric vehicles have less air pollution cost and human health impacts compared to conventional gasoline vehicles. The economic cost of emissions and human health impact reduction potential can be up to 45% and 35%, respectively, if electric vehicles are charged through solar charging stations. Electric vehicles have potential to generate income for low and medium skilled workers in the U.S. In addition to quantified sustainability indicators, some sustainability metrics were developed to compare relative sustainability performance alternative passenger vehicles. BEV has the lowest greenhouse gas emissions and ecological land footprint per $ of its contribution to the U.S. GDP, and has the lowest ecological footprint per unit of its energy consumption. The only sustainability metrics that does not favor the BEV is the water-energy ratio, where the conventional gasoline vehicle performed best.

Suggested Citation

  • Nuri Cihat Onat & Murat Kucukvar & Omer Tatari, 2014. "Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles," Sustainability, MDPI, vol. 6(12), pages 1-38, December.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:12:p:9305-9342:d:43569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/12/9305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/12/9305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Melaina, Marc & Bremson, Joel, 2008. "Refueling availability for alternative fuel vehicle markets: Sufficient urban station coverage," Energy Policy, Elsevier, vol. 36(8), pages 3223-3231, August.
    2. An M. De Schryver & Rosalie van Zelm & Sebastien Humbert & Stephan Pfister & Thomas E. McKone & Mark A. J. Huijbregts, 2011. "Value Choices in Life Cycle Impact Assessment of Stressors Causing Human Health Damage," Journal of Industrial Ecology, Yale University, vol. 15(5), pages 796-815, October.
    3. Harto, Christopher & Meyers, Robert & Williams, Eric, 2010. "Life cycle water use of low-carbon transport fuels," Energy Policy, Elsevier, vol. 38(9), pages 4933-4944, September.
    4. Arnold Tukker, 2002. "Risk Analysis, Life Cycle Assessment—The Common Challenge of Dealing with the Precautionary Frame (Based on the Toxicity Controversy in Sweden and the Netherlands)," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 821-832, October.
    5. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    6. Neil Foster-McGregor & Robert Stehrer & Gaaitzen Vries, 2013. "Offshoring and the skill structure of labour demand," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 149(4), pages 631-662, December.
    7. Matthias Finkbeiner & Erwin M. Schau & Annekatrin Lehmann & Marzia Traverso, 2010. "Towards Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 2(10), pages 1-14, October.
    8. Robbie M. Andrew & Glen P. Peters, 2013. "A Multi-Region Input-Output Table Based On The Global Trade Analysis Project Database (Gtap-Mrio)," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 99-121, March.
    9. Melaina, Marc W & Bremson, Joel, 2008. "Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage," Institute of Transportation Studies, Working Paper Series qt8ng1g4rf, Institute of Transportation Studies, UC Davis.
    10. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    11. Karabasoglu, Orkun & Michalek, Jeremy, 2013. "Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains," Energy Policy, Elsevier, vol. 60(C), pages 445-461.
    12. Thomas O. Wiedmann & Manfred Lenzen & John R. Barrett, 2009. "Companies on the Scale: Comparing and Benchmarking the Sustainability Performance of Businesses," Journal of Industrial Ecology, Yale University, vol. 13(3), pages 361-383, June.
    13. Satish Joshi, 1999. "Product Environmental Life‐Cycle Assessment Using Input‐Output Techniques," Journal of Industrial Ecology, Yale University, vol. 3(2‐3), pages 95-120, April.
    14. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    15. Foran, Barney & Lenzen, Manfred & Dey, Christopher & Bilek, Marcela, 2005. "Integrating sustainable chain management with triple bottom line accounting," Ecological Economics, Elsevier, vol. 52(2), pages 143-157, January.
    16. Arnold Tukker & Erik Dietzenbacher, 2013. "Global Multiregional Input-Output Frameworks: An Introduction And Outlook," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 1-19, March.
    17. Todd Litman & David Burwell, 2006. "Issues in sustainable transportation," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 6(4), pages 331-347.
    18. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    19. Marshall, Brandon M. & Kelly, Jarod C. & Lee, Tae-Kyung & Keoleian, Gregory A. & Filipi, Zoran, 2013. "Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study," Energy Policy, Elsevier, vol. 58(C), pages 358-370.
    20. Delucchi, Mark & Lipman, Timothy, 2001. "An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt50q9060k, Institute of Transportation Studies, UC Davis.
    21. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    2. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    3. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    4. Maxime Agez & Guillaume Majeau‐Bettez & Manuele Margni & Anders H. Strømman & Réjean Samson, 2020. "Lifting the veil on the correction of double counting incidents in hybrid life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 517-533, June.
    5. repec:dgr:rugggd:gd-144 is not listed on IDEAS
    6. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    7. Boya Zhou & Shaojun Zhang & Ye Wu & Wenwei Ke & Xiaoyi He & Jiming Hao, 2018. "Energy-saving benefits from plug-in hybrid electric vehicles: perspectives based on real-world measurements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 735-756, June.
    8. Mark Thissen & Maureen Lankhuizen & Frank (F.G.) van Oort & Bart Los & Dario Diodato, 2018. "EUREGIO: The construction of a global IO DATABASE with regional detail for Europe for 2000-2010," Tinbergen Institute Discussion Papers 18-084/VI, Tinbergen Institute.
    9. Traut, Elizabeth & Hendrickson, Chris & Klampfl, Erica & Liu, Yimin & Michalek, Jeremy J., 2012. "Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost," Energy Policy, Elsevier, vol. 51(C), pages 524-534.
    10. Dolter, Brett & Victor, Peter A., 2016. "Casting a long shadow: Demand-based accounting of Canada's greenhouse gas emissions responsibility," Ecological Economics, Elsevier, vol. 127(C), pages 156-164.
    11. João Amador & Sónia Cabral, 2014. "Global Value Chains: Surveying Drivers, Measures and Impacts," Working Papers w201403, Banco de Portugal, Economics and Research Department.
    12. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    13. Mattia Cai, 2016. "Greenhouse gas emissions from tourist activities in South Tyrol," Tourism Economics, , vol. 22(6), pages 1301-1314, December.
    14. Forin, Silvia & Radebach, Alexander & Steckel, Jan Christoph & Ward, Hauke, 2018. "The effect of industry delocalization on global energy use: A global sectoral perspective," Energy Economics, Elsevier, vol. 70(C), pages 233-243.
    15. Erik Dietzenbacher & Manfred Lenzen & Bart Los & Dabo Guan & Michael L. Lahr & Ferran Sancho & Sangwon Suh & Cuihong Yang, 2013. "Input--Output Analysis: The Next 25 Years," Economic Systems Research, Taylor & Francis Journals, vol. 25(4), pages 369-389, December.
    16. Sylvain Weber & Reyer Gerlagh & Nicole A. Mathys & Daniel Moran, 2017. "CO2 embedded in trade: trends and fossil fuel drivers," Development Working Papers 413, Centro Studi Luca d'Agliano, University of Milano.
    17. Amador, João & Cabral, Sónia, 2014. "Global value chains: surveying drivers and measures," Working Paper Series 1739, European Central Bank.
    18. Chen, B. & Yang, Q. & Zhou, Sili & Li, J.S. & Chen, G.Q., 2017. "Urban economy's carbon flow through external trade: Spatial-temporal evolution for Macao," Energy Policy, Elsevier, vol. 110(C), pages 69-78.
    19. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    20. Zhou, Boya & Wu, Ye & Zhou, Bin & Wang, Renjie & Ke, Wenwei & Zhang, Shaojun & Hao, Jiming, 2016. "Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions," Energy, Elsevier, vol. 96(C), pages 603-613.
    21. Stefan Giljum & Hanspeter Wieland & Stephan Lutter & Martin Bruckner & Richard Wood & Arnold Tukker & Konstantin Stadler, 2016. "Identifying priority areas for European resource policies: a MRIO-based material footprint assessment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:12:p:9305-9342:d:43569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.