IDEAS home Printed from https://ideas.repec.org/p/ags/aaea06/21133.html
   My bibliography  Save this paper

Estimated Contribution of Four Biotechnologies to New Zealand Agriculture

Author

Listed:
  • Kaye-Blake, William
  • Saunders, Caroline M.

Abstract

The impact of biotechnology is an important consideration for New Zealand. The country depends significantly on agricultural production and exports (Ministry of Agriculture and Forestry, 2004), and has relied in part on modern biotechnology for productivity increases over the last 20 years (Evenson & Gollin, 2003; Jacobsen & Scobie, 1999; Ovenden, Anderson, Armstrong, & Mitchel, 1985). A recent survey of individuals in agriculture and biotechnology generated a comprehensive list of products and processes that are derived from four specific biotechnologies and are commercially significant in agriculture (Kaye-Blake, Saunders, Emanuelsson, Dalziel, & Wreford, 2005). This innovative research generated primary data on the actual impacts that biotechnology is currently having on agricultural production and produced a unique dataset of biotechnology products and processes and their value to New Zealand agriculture. Analysis found that these four biotechnologies are contributing approximately $206 million per year to agriculture. This analysis, however, assumed perfectly elastic international prices, and thus that New Zealand agricultural producers would capture the benefits of increased productivity. Literature on the impacts of productivity increases suggests that the distribution of benefits from increased productivity depends on how widely a technology is adopted. For example, genetic improvements in the crops of one country can allow domestic producers to increase producer surplus at the expense of producers in the rest of the world (Frisvold, Sullivan, & Raneses, 2003). By contrast, domestic farmers may be worse off if innovations are adopted in both the home country and the rest of the world (Moschini, Lapan, & Sobolevsky, 2000). The literature also suggests that specific impact of a novel technology is important to its impacts on agricultural producers. For example, technology that increases yields may be less beneficial for farmers than technology that reduces costs (Moschini et al., 2000). In addition, innovations that increase productivity of commodity products with low price elasticities of demand may not benefit farmers as much as innovations that increase consumer demand for agricultural products (Saunders & Cagatay, 2003). These findings are relevant because some features of New Zealand's primary sector suggest that international price impacts may be important. New Zealand is an open economy (Ministry of Agriculture and Forestry (MAF), 2004) and a significant exporter on world markets, particularly in pastoral products (Ministry of Agriculture and Forestry (MAF), 2004; Saunders & Cagatay, 2003). Modelling the movement of international prices may be done in several ways. The general equilibrium GTAP model (Hertel, 1997), for example, has been used to examine the potential impacts of biotechnology on producer and consumer welfare assuming different levels of adoption and consumer acceptance (e.g., Anderson & Jackson, 2005; Stone, Matysek, & Dolling, 2002). These impacts have also been analysed with partial equilibrium models, in particular models derived originally from the Uruguay Round of trade negotiations (Roningen, 1997), such as SWOPSIM (Frisvold et al., 2003; Roningen, Dixit, Sullivan, & Hart, 1991) and LTEM (Saunders & Cagatay, 2003). Partial equilibrium models are particularly appropriate for analysing impacts on a single sector of the economy: they allow substantial disaggregation by commodity and examination of the linkages that lead to model results (Gaisford & Kerr, 2001). In order to investigate the possible impact of biotechnological innovations on commodity prices and agricultural producers, the results of the original findings based on elastic prices were incorporated into a partial equilibrium model of world agricultural commodity trade (Cagatay & Saunders, 2003; Saunders & Cagatay, 2003). The model contained 19 commodities, including the major trade commodities for New Zealand (dairy products and meat). World trade was divided into 17 countries and the rest of the world, including New Zealand as a separate entity as well as the US, EU, Australia, Japan and others. As a partial equilibrium model, it examined the agricultural sector in isolation from other sectors of the economy. The base year was 2000, and impacts were modelled to 2005. The base solution modelled current production, which included biotechnological innovations. Alternative scenarios modelled the impact of the absence or loss of biotechnological innovations. The first scenario modelled the absence of innovations in all countries, while the second scenario examined the impact of innovations specific to New Zealand. The contribution of biotechnology to productivity was assessed separately for each commodity, using the original dataset (Kaye-Blake et al., 2005). For each commodity in the model, the analysis calculated the change in producer prices and total producer returns (price x quantity). The modelling results conformed to expectations. In the first scenario, a worldwide reduction in productivity in the primary sector led market prices to adjust upward in response to the lower production. For the second scenario, the price impacts were smaller for sectors with innovations specific to New Zealand. These changes were then combined with the original, constant-price estimate to calculate price-adjusted figures. The constant price analysis found that the contribution of the biotechnologies was $206 million. The first modelling scenario found that the economic benefit of the biotechnologies was only $19 million because increased productivity reduced commodity prices. The second scenario yielded an economic benefit of $191 million, suggesting that adopting New Zealand specific innovations might not have a large impact on aggregate trade and might have allowed domestic producers to capture much of the increased welfare from innovations. Economic impacts, however, were spread unevenly across the commodities. In both trade scenarios, dairy producers increased producer returns through biotechnology, regardless of how widely the innovations were adopted. Meat producers, on the other hand, improved their returns when the innovations were specific to New Zealand, but were somewhat worse off when the innovations were available worldwide. This research contributes to understanding of the impacts of biotechnology in several ways. First, the productivity impacts were based on empirical findings regarding estimated impacts of actual commercially released biotechnologies; these were estimates of impacts that have actually occurred. Secondly, the productivity effects varied by commodity in the model, so that the impacts on different commodities could be estimated. Finally, by using a disaggregated, multi-commodity model, the cross-effects from resources shifting into other agricultural uses could be captured.

Suggested Citation

  • Kaye-Blake, William & Saunders, Caroline M., 2006. "Estimated Contribution of Four Biotechnologies to New Zealand Agriculture," 2006 Annual meeting, July 23-26, Long Beach, CA 21133, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea06:21133
    DOI: 10.22004/ag.econ.21133
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/21133/files/sp06ka04.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.21133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Caroline Saunders & Selim Cagatay, 2003. "Commercial release of first‐generation genetically modified food products in New Zealand: using a partial equilibrium trade model to assess the impact on producer returns in New Zealand," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 233-259, June.
    2. Stone, Susan F. & Matysek, Anna & Dolling, Andrew, 2002. "Modelling Possible Impacts of GM Crops on Australian Trade," Staff Research Papers 31913, Productivity Commission.
    3. Anderson, Kym & Jackson, Lee Ann, 2005. "GM crop technology and trade restraints: economic implications for Australia and New Zealand," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(3), pages 1-19.
    4. Kaye-Blake, William & Saunders, Caroline M. & Emanuelsson, Martin, 2006. "Current Contribution of Four Biotechnologies to New Zealand's Primary Sector," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25411, International Association of Agricultural Economists.
    5. José Benjamin Falck-Zepeda & Greg Traxler & Robert G. Nelson, 2000. "Surplus Distribution from the Introduction of a Biotechnology Innovation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(2), pages 360-369.
    6. Sobolevsky, Andrei & Moschini, GianCarlo & Lapan, Harvey E., 2002. "Genetically Modified Crop Innovations and Product Differentiation: Trade and Welfare Effects in the Soybean Complex," Staff General Research Papers Archive 10098, Iowa State University, Department of Economics.
    7. Harvey E. Lapan & Giancarlo Moschini, 2004. "Innovation and Trade with Endogenous Market Failure: The Case of Genetically Modified Products," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(3), pages 634-648.
    8. Roningen, Vernon & Dixit, Praveen & Sullivan, John & Hart, Tracey, 1991. "Overview of the Static World Policy Simulation (SWOPSIM) Modeling Framework," Staff Reports 278390, United States Department of Agriculture, Economic Research Service.
    9. Saunders, Caroline M. & Cagatay, Selim, 2003. "Commercial release of first-generation genetically modified food products in New Zealand: using a partial equilibrium trade model to assess the impact on producer returns in New Zealand," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 1-27, June.
    10. Colman, David R., 1983. "A Review of the Arts of Supply Response Analysis," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 51(03), pages 1-30, December.
    11. Stefan Tangermann, 2005. "Organisation for Economic Co-operation and Development Area Agricultural Policies and the Interests of Developing Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(5), pages 1128-1144.
    12. Frisvold, George B. & Sullivan, John & Raneses, Anton, 2003. "Genetic improvements in major US crops: the size and distribution of benefits," Agricultural Economics, Blackwell, vol. 28(2), pages 109-119, March.
    13. Roningen, Vernon & Sullivan, John & Dixit, Praveen, 1991. "Documentation of the Static World Policy Simulation (SWOPSIM) Modeling Framework," Staff Reports 278599, United States Department of Agriculture, Economic Research Service.
    14. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    15. Roningen, Vernon & Dixit, Praveen & Sullivan, John & Hart, Tracy, 1991. "Overview of the Static World Policy Simulation (SWOPSIM) Modeling Framework," Staff Reports 278513, United States Department of Agriculture, Economic Research Service.
    16. Matin Qaim & Greg Traxler, 2005. "Roundup Ready soybeans in Argentina: farm level and aggregate welfare effects," Agricultural Economics, International Association of Agricultural Economists, vol. 32(1), pages 73-86, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William H. Kaye-Blake & Caroline M. Saunders & Selim Cagatay, 2008. "Genetic Modification Technology and Producer Returns: The Impacts of Productivity, Preferences, and Technology Uptake," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(4), pages 692-710.
    2. Kym Anderson & Lee Ann Jackson, 2005. "GM crop technology and trade restraints: economic implications for Australia and New Zealand," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(3), pages 263-281, September.
    3. Saunders, Caroline M. & Roningen, Vernon O., 2001. "Trade And The Environment. Linking A Partial Equilibrium Trade Model With Production Systems And Their Environmental Consequences," 2001: International Trade in Livestock Products Symposium, January 2001, Auckland, New Zealand 14552, International Agricultural Trade Research Consortium.
    4. Dillen, Koen & Demont, Matty & Tollens, Eric, 2008. "Modelling heterogeneity to estimate the ex ante value of biotechnology innovations," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 43945, European Association of Agricultural Economists.
    5. Caroline Saunders & Anita Wreford & Selim Cagatay, 2006. "Trade liberalisation and greenhouse gas emissions: the case of dairying in the European Union and New Zealand ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(4), pages 538-555, December.
    6. Bchir, Mohamed Hedi & Bouet, Antoine, 2009. "Which tariff aggregator for trade modelers?," Conference papers 331888, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Anderson, Kym & Jackson, Lee Ann, 2004. "GM food technology abroad and its implications for Australia and New Zealand," 2004 Conference (48th), February 11-13, 2004, Melbourne, Australia 58365, Australian Agricultural and Resource Economics Society.
    8. GianCarlo Moschini & Harun Bulut & Luigi Cembalo, 2005. "On the Segregation of Genetically Modified, Conventional and Organic Products in European Agriculture: A Multi‐market Equilibrium Analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 56(3), pages 347-372, December.
    9. James Gleckler & Robert Koopman & Luther Tweeten, 1993. "European economic integration and the consequences for US agriculture," Agribusiness, John Wiley & Sons, Ltd., vol. 9(4), pages 325-337.
    10. Saunders, Caroline M. & Wreford, Anita, 2003. "Mitigation Of Greenhouse Gas Emissions: The Impacts On A Developed Country Highly Dependent On Agriculture," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25912, International Association of Agricultural Economists.
    11. Ames, Glenn C. W. & Gunter, Lewell & Davis, Claudia D., 1996. "Analysis of USA-European Community oilseeds agreements," Agricultural Economics, Blackwell, vol. 15(2), pages 97-112, November.
    12. Saunders, Caroline M. & Wreford, Anita, 2003. "Greenhouse gas emissions from livestock production," 2003 Conference (47th), February 12-14, 2003, Fremantle, Australia 58273, Australian Agricultural and Resource Economics Society.
    13. Ames, Glenn C.W. & Gunter, Lewell F. & Davis, Claudia D., 1996. "Analysis Of The U.S.-European Community Oilseeds Agreement," Faculty Series 16646, University of Georgia, Department of Agricultural and Applied Economics.
    14. Frisvold, George & Reeves, Jeanne, 2015. "Genetically Modified Crops: International Trade And Trade Policy Effects," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 3(2), pages 1-13, April.
    15. Hareau, Guy Gaston & Norton, George W. & Mills, Bradford F. & Peterson, Everett B., 2004. "Potential Benefits Of Transgenic Rice In Asia: A General Equilibrium Approach," 2004 Annual meeting, August 1-4, Denver, CO 20334, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Mutambatsere, Emelly, 2006. "Trade Policy Reforms in the Cereals Sector of the SADC Region: Implications on Food Security," Working Papers 127055, Cornell University, Department of Applied Economics and Management.
    17. GianCarlo Moschini, 2008. "Biotechnology and the development of food markets: retrospect and prospects," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 35(3), pages 331-355, September.
    18. Federico Ciliberto & GianCarlo Moschini & Edward D. Perry, 2019. "Valuing product innovation: genetically engineered varieties in US corn and soybeans," RAND Journal of Economics, RAND Corporation, vol. 50(3), pages 615-644, September.
    19. Lyons, Robert F. & Goodhue, Rachael E. & Rausser, Gordon C., 1998. "A dynamic model of the food processing sector in the new market economies of Central Europe," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt79m6s9c5, Department of Agricultural & Resource Economics, UC Berkeley.
    20. Chantal Pohl Nielsen & Kym Anderson, 2003. "Golden Rice and the Looming GMO Trade Debate: Implication for the Poor," Centre for International Economic Studies Working Papers 2003-22, University of Adelaide, Centre for International Economic Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea06:21133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.