Advanced Search
MyIDEAS: Login to save this paper or follow this series

Stochastic volatility of volatility in continuous time

Contents:

Author Info

  • Ole E. Barndorff-Nielsen

    ()
    (The T.N. Thiele Centre for Mathematics in Natural Science, Department of Mathematical Sciences, & CREATES, Aarhus University)

  • Almut E. D. Veraart

    ()
    (School of Economics and Management, Aarhus University and CREATES)

Abstract

This paper introduces the concept of stochastic volatility of volatility in continuous time and, hence, extends standard stochastic volatility (SV) models to allow for an additional source of randomness associated with greater variability in the data. We discuss how stochastic volatility of volatility can be defined both non–parametrically, where we link it to the quadratic variation of the stochastic variance process, and parametrically, where we propose two new SV models which allow for stochastic volatility of volatility. In addition, we show that volatility of volatility can be estimated by a novel estimator called pre–estimated spot variance based realised variance.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://ftp.econ.au.dk/creates/rp/09/rp09_25.pdf
Download Restriction: no

Bibliographic Info

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2009-25.

as in new window
Length: 36
Date of creation: 06 Jul 2009
Date of revision:
Handle: RePEc:aah:create:2009-25

Contact details of provider:
Web page: http://www.econ.au.dk/afn/

Related research

Keywords: Stochastic volatility; volatility of volatility; non-Gaussian Ornstein–Uhlenbeck process; superposition; leverage effect; Lévy processes.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jun Yu, 2004. "On Leverage in a Stochastic Volatility Model," Econometric Society 2004 Far Eastern Meetings, Econometric Society 506, Econometric Society.
  2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, Econometric Society, vol. 59(2), pages 347-70, March.
  3. Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, School of Economics and Management, University of Aarhus.
  4. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
  5. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
  6. Jeannette H.C. Woerner, 2003. "Purely discontinuous Levy processes and power variation: inference for integrated volatility and the scale parameter," OFRC Working Papers Series 2003mf08, Oxford Financial Research Centre.
  7. Neil Shephard, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," Economics Series Working Papers 2004-FE-21, University of Oxford, Department of Economics.
  8. Vetter, Mathias & Podolskij, Mark, 2006. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," Technical Reports 2006,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  9. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
  10. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
  11. Veraart, Almut E.D., 2010. "Inference For The Jump Part Of Quadratic Variation Of Itô Semimartingales," Econometric Theory, Cambridge University Press, vol. 26(02), pages 331-368, April.
  12. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, American Statistical Association, vol. 24, pages 127-161, April.
  13. repec:oxf:wpaper:264 is not listed on IDEAS
  14. Silja Kinnebrock & Mark Podolskij, 2007. "A Note on the Central Limit Theorem for Bipower Variation of General Functions," OFRC Working Papers Series 2007fe03, Oxford Financial Research Centre.
  15. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
  16. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  17. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
  18. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
  19. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein-Uhlenbeck type," Mathematical Finance, Wiley Blackwell, Wiley Blackwell, vol. 13(4), pages 445-466.
  20. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, American Statistical Association, vol. 14(4), pages 429-34, October.
  21. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, Econometric Society, vol. 53(2), pages 385-407, March.
  22. Barndorff-Nielsen, Ole Eiler & Graversen, Svend Erik & Jacod, Jean & Podolskij, Mark, 2004. "A central limit theorem for realised power and bipower variations of continuous semimartingales," Technical Reports 2004,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
  2. Imma Valentina Curato, 2012. "Asymptotics for the Fourier estimators of the volatility of volatility and the leverage," Working Papers - Mathematical Economics, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa 2012-11, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:aah:create:2009-25. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.