IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/228961.html
   My bibliography  Save this book chapter

Model transformation framework for scheduling offshore logistics

In: Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 30

Author

Listed:
  • Rippel, Daniel
  • Peng, Shengrui
  • Lütjen, Michael
  • Sczcerbicka, Helena
  • Freitag, Michael

Abstract

Purpose: Wind energy is a promising technology to produce sustainable energy. While higher wind speeds at sea result in higher energy production, they also impede the installation of wind farms. Several authors proposed optimization- or simulation-based scheduling models. This article provides a framework to instantiate different models and discusses their advantages and disadvantages using selected models from the literature. Methodology: Building upon previous research, which deducted a common meta-model by analyzing current literature, the framework realizes this model using the OMG's Essential Meta-Object Facility Standard. Moreover, the framework uses the OMG's Model To Text Transformation Language for transformations to different models found in the literature and from previous work, to evaluate their behavior given the same base-scenario. Findings: The results show that the proposed framework achieves an instantiation of different model types, i.e., a mathematical optimization, a multi-agent simulation, and a Petri-Nets-based simulation. The discussion highlights the advantages of these types regarding speed, optimality, and flexibility. As the primary advantage, this framework allows investigating the installation on varying levels, focusing on local resources, processes, or the global system. Originality: This research aims to operationalize a common meta-model and model transformations between different model formulations by applying well-established standards to realize a basis for using these models during the planning and schedul-ing of offshore activities. To the authors' best knowledge, no comparable work on the integration of different modeling techniques in the area of offshore logistics exists.

Suggested Citation

  • Rippel, Daniel & Peng, Shengrui & Lütjen, Michael & Sczcerbicka, Helena & Freitag, Michael, 2020. "Model transformation framework for scheduling offshore logistics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 521-552, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:228961
    DOI: 10.15480/882.3151
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/228961/1/hicl-2020-30-521.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.3151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chandra Ade Irawan & Graham Wall & Dylan Jones, 2019. "An optimisation model for scheduling the decommissioning of an offshore wind farm," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 513-548, June.
    2. Breton, Simon-Philippe & Moe, Geir, 2009. "Status, plans and technologies for offshore wind turbines in Europe and North America," Renewable Energy, Elsevier, vol. 34(3), pages 646-654.
    3. Kerkhove, L.-P. & Vanhoucke, M., 2017. "Optimised scheduling for weather sensitive offshore construction projects," Omega, Elsevier, vol. 66(PA), pages 58-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rippel, Daniel & Jathe, Nicolas & Lütjen, Michael & Szczerbicka, Helena & Freitag, Michael, 2019. "Integrated domain model for operative offshore installation planning," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 25-54, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Daniel Rippel & Fatemeh Abasian Foroushani & Michael Lütjen & Michael Freitag, 2021. "A Crew Scheduling Model to Incrementally Optimize Workforce Assignments for Offshore Wind Farm Constructions," Energies, MDPI, vol. 14(21), pages 1-21, October.
    3. Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), 2020. "Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability," Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management, volume 30, number 30.
    4. Emad Mohamed & Parinaz Jafari & Adam Chehouri & Simaan AbouRizk, 2021. "Simulation-Based Approach for Lookahead Scheduling of Onshore Wind Projects Subject to Weather Risk," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    5. Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
    6. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    7. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    9. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    10. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    11. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    12. Lei, Hang & Su, Jie & Bao, Yan & Chen, Yaoran & Han, Zhaolong & Zhou, Dai, 2019. "Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms," Energy, Elsevier, vol. 166(C), pages 471-489.
    13. Campbell, Maria S. & Stehfest, Kilian M. & Votier, Stephen C. & Hall-Spencer, Jason M., 2014. "Mapping fisheries for marine spatial planning: Gear-specific vessel monitoring system (VMS), marine conservation and offshore renewable energy," Marine Policy, Elsevier, vol. 45(C), pages 293-300.
    14. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    15. Deng, Sijia & Liu, Yingyi & Ning, Dezhi, 2023. "Fully coupled aero-hydrodynamic modelling of floating offshore wind turbines in nonlinear waves using a direct time-domain approach," Renewable Energy, Elsevier, vol. 216(C).
    16. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    17. da Costa, Paulo & Verleijsdonk, Peter & Voorberg, Simon & Akcay, Alp & Kapodistria, Stella & van Jaarsveld, Willem & Zhang, Yingqian, 2023. "Policies for the dynamic traveling maintainer problem with alerts," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1141-1152.
    18. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    19. Orlandini, Valentina & Pierobon, Leonardo & Schløer, Signe & De Pascale, Andrea & Haglind, Fredrik, 2016. "Dynamic performance of a novel offshore power system integrated with a wind farm," Energy, Elsevier, vol. 109(C), pages 236-247.
    20. Hermans, Ben & Leus, Roel & Looy, Bart Van, 2023. "Deciding on scheduling, secrecy, and patenting during the new product development process: The relevance of project planning models," Omega, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:228961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.