IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6963-d662860.html
   My bibliography  Save this article

A Crew Scheduling Model to Incrementally Optimize Workforce Assignments for Offshore Wind Farm Constructions

Author

Listed:
  • Daniel Rippel

    (BIBA—Bremer Institut für Produktion und Logistik GmbH, University of Bremen, Hochschulring 20, 28359 Bremen, Germany
    Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany)

  • Fatemeh Abasian Foroushani

    (Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany)

  • Michael Lütjen

    (BIBA—Bremer Institut für Produktion und Logistik GmbH, University of Bremen, Hochschulring 20, 28359 Bremen, Germany)

  • Michael Freitag

    (BIBA—Bremer Institut für Produktion und Logistik GmbH, University of Bremen, Hochschulring 20, 28359 Bremen, Germany
    Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany)

Abstract

In the literature, different authors attribute between 15% to 30% of a wind farm’s costs to logistics during the installation, e.g., for vessels or personnel. Currently, there exist only a few approaches for crew scheduling in the offshore area. However, current approaches only satisfy subsets of the offshore construction area’s specific terms and conditions. This article first presents a literature review to identify different constraints imposed on crew scheduling for offshore installations. Afterward, it presents a new Mixed-Integer Linear Model that satisfies these crew scheduling constraints and couples it with a scheduling approach using a Model Predictive Control scheme to include weather dynamics. The evaluation of this model shows reliable scheduling of persons/teams given weather-dependent operations. Compared to a conventionally assumed full staffing of vessels and the port, the model decreases the required crews by approximately 50%. Moreover, the proposed model shows good runtime behavior, obtaining optimal solutions for realistic scenarios in under an hour.

Suggested Citation

  • Daniel Rippel & Fatemeh Abasian Foroushani & Michael Lütjen & Michael Freitag, 2021. "A Crew Scheduling Model to Incrementally Optimize Workforce Assignments for Offshore Wind Farm Constructions," Energies, MDPI, vol. 14(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6963-:d:662860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6963/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6963/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ursavas, Evrim, 2017. "A benders decomposition approach for solving the offshore wind farm installation planning at the North Sea," European Journal of Operational Research, Elsevier, vol. 258(2), pages 703-714.
    2. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    3. Alex Leggate & Seda Sucu & Kerem Akartunalı & Robert van der Meer, 2018. "Modelling crew scheduling in offshore supply vessels," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(6), pages 959-970, June.
    4. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    5. Anisa Rizvanolli & Carl Georg Heise, 2018. "Efficient Ship Crew Scheduling Complying with Resting Hours Regulations," Operations Research Proceedings, in: Andreas Fink & Armin Fügenschuh & Martin Josef Geiger (ed.), Operations Research Proceedings 2016, pages 535-541, Springer.
    6. Chandra Ade Irawan & Graham Wall & Dylan Jones, 2019. "An optimisation model for scheduling the decommissioning of an offshore wind farm," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 513-548, June.
    7. Breton, Simon-Philippe & Moe, Geir, 2009. "Status, plans and technologies for offshore wind turbines in Europe and North America," Renewable Energy, Elsevier, vol. 34(3), pages 646-654.
    8. Barlow, Euan & Tezcaner Öztürk, Diclehan & Revie, Matthew & Akartunalı, Kerem & Day, Alexander H. & Boulougouris, Evangelos, 2018. "A mixed-method optimisation and simulation framework for supporting logistical decisions during offshore wind farm installations," European Journal of Operational Research, Elsevier, vol. 264(3), pages 894-906.
    9. Kerkhove, L.-P. & Vanhoucke, M., 2017. "Optimised scheduling for weather sensitive offshore construction projects," Omega, Elsevier, vol. 66(PA), pages 58-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rippel, Daniel & Jathe, Nicolas & Lütjen, Michael & Szczerbicka, Helena & Freitag, Michael, 2019. "Integrated domain model for operative offshore installation planning," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 25-54, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Rippel, Daniel & Peng, Shengrui & Lütjen, Michael & Sczcerbicka, Helena & Freitag, Michael, 2020. "Model transformation framework for scheduling offshore logistics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 521-552, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    3. Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), 2020. "Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability," Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management, volume 30, number 30.
    4. Tjaberings, Jorick & Fazi, Stefano & Ursavas, Evrim, 2022. "Evaluating operational strategies for the installation of offshore wind turbine substructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Chandra Ade Irawan & Graham Wall & Dylan Jones, 2019. "An optimisation model for scheduling the decommissioning of an offshore wind farm," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 513-548, June.
    6. Stålhane, Magnus & Halvorsen-Weare, Elin E. & Nonås, Lars Magne & Pantuso, Giovanni, 2019. "Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms," European Journal of Operational Research, Elsevier, vol. 276(2), pages 495-509.
    7. Lerche, J. & Lorentzen, S. & Enevoldsen, P. & Neve, H.H., 2022. "The impact of COVID -19 on offshore wind project productivity – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. İlkay Unay-Gailhard & Mark A. Brennen, 2022. "How digital communications contribute to shaping the career paths of youth: a review study focused on farming as a career option," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1491-1508, December.
    9. Mahin Ghafari & Vali Baigi & Zahra Cheraghi & Amin Doosti-Irani, 2016. "The Prevalence of Asymptomatic Bacteriuria in Iranian Pregnant Women: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-10, June.
    10. Elizabeth T Cafiero-Fonseca & Andrew Stawasz & Sydney T Johnson & Reiko Sato & David E Bloom, 2017. "The full benefits of adult pneumococcal vaccination: A systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    11. Santos Urbina & Sofía Villatoro & Jesús Salinas, 2021. "Self-Regulated Learning and Technology-Enhanced Learning Environments in Higher Education: A Scoping Review," Sustainability, MDPI, vol. 13(13), pages 1-12, June.
    12. Oded Berger-Tal & Alison L Greggor & Biljana Macura & Carrie Ann Adams & Arden Blumenthal & Amos Bouskila & Ulrika Candolin & Carolina Doran & Esteban Fernández-Juricic & Kiyoko M Gotanda & Catherine , 2019. "Systematic reviews and maps as tools for applying behavioral ecology to management and policy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(1), pages 1-8.
    13. Nadine Desrochers & Adèle Paul‐Hus & Jen Pecoskie, 2017. "Five decades of gratitude: A meta‐synthesis of acknowledgments research," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(12), pages 2821-2833, December.
    14. Maryono, Maryono & Killoes, Aditya Marendra & Adhikari, Rajendra & Abdul Aziz, Ammar, 2024. "Agriculture development through multi-stakeholder partnerships in developing countries: A systematic literature review," Agricultural Systems, Elsevier, vol. 213(C).
    15. Alene Sze Jing Yong & Yi Heng Lim & Mark Wing Loong Cheong & Ednin Hamzah & Siew Li Teoh, 2022. "Willingness-to-pay for cancer treatment and outcome: a systematic review," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 1037-1057, August.
    16. Xue-Ying Xu & Hong Kong & Rui-Xiang Song & Yu-Han Zhai & Xiao-Fei Wu & Wen-Si Ai & Hong-Bo Liu, 2014. "The Effectiveness of Noninvasive Biomarkers to Predict Hepatitis B-Related Significant Fibrosis and Cirrhosis: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-16, June.
    17. Vicente Miñana-Signes & Manuel Monfort-Pañego & Javier Valiente, 2021. "Teaching Back Health in the School Setting: A Systematic Review of Randomized Controlled Trials," IJERPH, MDPI, vol. 18(3), pages 1-18, January.
    18. Agnieszka A. Tubis & Katarzyna Grzybowska, 2022. "In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    19. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    20. Obsa Urgessa Ayana & Jima Degaga, 2022. "Effects of rural electrification on household welfare: a meta-regression analysis," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 69(2), pages 209-261, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6963-:d:662860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.