IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/222269.html
   My bibliography  Save this article

Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin, Central Chile

Author

Listed:
  • Peña-Guerrero, Mayra Daniela
  • Nauditt, Alexandra
  • Muñoz-Robles, Carlos
  • Ribbe, Lars
  • Meza, Francisco

Abstract

Droughts can have serious negative impacts on the water quality needed for irrigated agriculture. The Metropolitan region of Chile is a relevant producer of high-value crops and is prone to droughts. Standardized Drought Indices were used to characterize meteorological and hydrological droughts for the period from 1985 to 2015. To understand the relationship between droughts and water quality, we evaluated the correlations between daily discharge and surface water quality observations. The threshold level method was used to compare physicochemical parameters during hydrological drought periods with the Chilean water quality thresholds for agricultural uses. A significant (p

Suggested Citation

  • Peña-Guerrero, Mayra Daniela & Nauditt, Alexandra & Muñoz-Robles, Carlos & Ribbe, Lars & Meza, Francisco, 2020. "Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin, Central Chile," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 65(6), pages 1005-1021.
  • Handle: RePEc:zbw:espost:222269
    DOI: 10.1080/02626667.2020.1711911
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/222269/1/Pena_Guerrero_2020_Drought_impacts_Chile.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1080/02626667.2020.1711911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosegrant, M. W. & Ringler, C. & McKinney, D. C. & Cai, X. & Keller, A. & Donoso, G., 2000. "Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin," Agricultural Economics, Blackwell, vol. 24(1), pages 33-46, December.
    2. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babalwa Gqomfa & Thabang Maphanga & Takalani Terry Phungela & Benett Siyabonga Madonsela & Karabo Malakane & Stanley Lekata, 2023. "El Niño Southern Oscillation (ENSO) Implication towards Crocodile River Water Quality in South Africa," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    2. Liliana De Simone & Mario Pezoa, 2021. "Urban Shopping Malls and Sustainability Approaches in Chilean Cities: Relations between Environmental Impacts of Buildings and Greenwashing Branding Discourses," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    3. Mohsen Sharafatmandrad & Azam Khosravi Mashizi, 2021. "Temporal and Spatial Assessment of Supply and Demand of the Water-yield Ecosystem Service for Water Scarcity Management in Arid to Semi-arid Ecosystems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 63-82, January.
    4. Jianxu Liu & Xiaoqing Li & Yansong Li & Jirakom Sirisrisakulchai & Xuefei Kang & Jiande Cui, 2024. "Decomposition and Driving Factors of Total Factor Productivity of Food Crops in the Yellow River Basin, China," Agriculture, MDPI, vol. 14(4), pages 1-24, March.
    5. Subhasis Giri & Ashok Mishra & Zhen Zhang & Richard G. Lathrop & Ali O. Alnahit, 2021. "Meteorological and Hydrological Drought Analysis and Its Impact on Water Quality and Stream Integrity," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    6. Yonas T. Bahta & Vuyiseka A. Myeki, 2022. "The Impact of Agricultural Drought on Smallholder Livestock Farmers: Empirical Evidence Insights from Northern Cape, South Africa," Agriculture, MDPI, vol. 12(4), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    2. Romero, Pascual & Botía, Pablo & del Amor, Francisco M. & Gil-Muñoz, Rocío & Flores, Pilar & Navarro, Josefa María, 2019. "Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting condi," Agricultural Water Management, Elsevier, vol. 225(C).
    3. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    4. Britz, Wolfgang & Kuhn, Arnim, 2011. "Can Hydro-economic River Basis Models Simulate Water Shadow Prices Under Asymmetric Access?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114272, European Association of Agricultural Economists.
    5. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    6. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," IWMI Books, Reports H040602, International Water Management Institute.
    7. Tiruye, A. E. & Belay, S. A. & Schmitter, Petra & Tegegne, Desalegn & Zimale, F. A. & Tilahun, S. A., 2023. "Yield, water productivity and nutrient balances under different water management technologies of irrigated wheat in Ethiopia," Papers published in Journals (Open Access), International Water Management Institute, pages 1-1(12):000.
    8. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    10. M. Ejaz Qureshi & Jeff Connor & Mac Kirby & Mohammed Mainuddin, 2007. "Economic assessment of acquiring water for environmental flows in the Murray Basin ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 283-303, September.
    11. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," Book Chapters,, International Water Management Institute.
    12. Pengfei Lin & Jinjun You & Hong Gan & Ling Jia, 2020. "Rule-Based Object-Oriented Water Resource System Simulation Model for Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3183-3197, August.
    13. Gohar, Abdelaziz A. & Ward, Frank A., 2010. "Gains from expanded irrigation water trading in Egypt: An integrated basin approach," Ecological Economics, Elsevier, vol. 69(12), pages 2535-2548, October.
    14. Saskia Keesstra & Jeroen Veraart & Jan Verhagen & Saskia Visser & Marit Kragt & Vincent Linderhof & Wilfred Appelman & Jolanda van den Berg & Ayodeji Deolu-Ajayi & Annemarie Groot, 2023. "Nature-Based Solutions as Building Blocks for the Transition towards Sustainable Climate-Resilient Food Systems," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    15. Tocados-Franco, Enrique & Berbel, Julio & Expósito, Alfonso, 2023. "Water policy implications of perennial expansion in the Guadalquivir River Basin (southern Spain)," Agricultural Water Management, Elsevier, vol. 282(C).
    16. Rosegrant, Mark W. & Ringler, Claudia, 1999. "Impact on food security and rural development of reallocating water from agriculture:," EPTD discussion papers 47, International Food Policy Research Institute (IFPRI).
    17. Alves, Gabriel de Sampaio Morais & Fulginiti, Lilyan & Perrin, Richard & Braga, Marcelo José, 2021. "The Use Value of Irrigation Water for Brazilian Agriculture," 2021 Conference, August 17-31, 2021, Virtual 315861, International Association of Agricultural Economists.
    18. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    19. Di Falco, Salvatore & Chavas, Jean-Paul & Smale, Melinda, 2006. "Farmer management of production risk on degraded lands: the role of wheat genetic diversity in Tigray Region, Ethiopia," EPTD discussion papers 153, International Food Policy Research Institute (IFPRI).
    20. Matteo Giuliani & Andrea Castelletti, 2016. "Is robustness really robust? How different definitions of robustness impact decision-making under climate change," Climatic Change, Springer, vol. 135(3), pages 409-424, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:222269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.