IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v225y2019ics0378377418318572.html
   My bibliography  Save this article

Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting conditions

Author

Listed:
  • Romero, Pascual
  • Botía, Pablo
  • del Amor, Francisco M.
  • Gil-Muñoz, Rocío
  • Flores, Pilar
  • Navarro, Josefa María

Abstract

Field-grown mature Monastrell grapevines grafted on five different rootstocks (140Ru, 1103 P, 41B, 110R, 161-49C) were subjected to regulated deficit irrigation (RDI) and partial root zone irrigation (PRI) in a semiarid region in SE Spain (D.O. Bullas, Region of Murcia). The main goal was to analyse the effects of the rootstock (R), irrigation method (IM), and their interaction (R x IM) on the final wine composition, volatile aromatic profile, and wine sensory attributes. The application of low annual water volumes (85–90 mm year−1) to low vigorous rootstocks (161-49C, 110R) was reflected in wines with higher contents of polyphenolics and alcohol, a higher wine quality index (QIwine), enhanced levels of health-promoting bioactive compounds (flavonols, malvidins), and better organoleptic perception compared to other rootstocks. These wines also had lower concentration of aromatic compounds (alcohols and esters). The 140Ru wines, although having a lower polyphenolic concentration and worse color, were among those rated most highly and preferred by the tasters. These wines had a high content of lactic acid and amino acids, higher tartaric/malic and anthocyanins/tannins ratios and a low concentration of aromatic compounds. In contrast, 1103 P and 41B wines had lower polyphenolic content-nutraceutical value, lower QIwine, tartaric/malic and anthocyanins/tannins ratios, more aromatic compounds, abundant green-vegetable/astringent notes, and more defect-causing compounds. In addition, these wines were also the worst rated in the sensory analysis. Significant positive correlations between the polyphenolic content and alcoholic degree and the score in the wine sensory analysis indicated that the greater the polyphenolic and alcohol contents in the wine, the better valued and more preferred by the tasters it was. PRI method improved wine quality and organoleptic perception for low vigor rootstocks (especially 161-49C), compared to RDI. These wines showed darker color, higher sugar content and nutraceutical potential as well as better sensory perception compared to other rootstock-IM combinations. In contrast, for high vigor rootstocks (1103 P, 140Ru), RDI was more beneficial for wine composition, global quality, and sensory perception. Overall, the PRI method also increased the presence of some volatile unpleasant alcohols in the wines. We recommend the use of low vigor rootstocks and DI techniques with small water volumes to improve Monastrell wine quality, and as a measure to adapt vineyards to climate change under semiarid and water limiting conditions.

Suggested Citation

  • Romero, Pascual & Botía, Pablo & del Amor, Francisco M. & Gil-Muñoz, Rocío & Flores, Pilar & Navarro, Josefa María, 2019. "Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting condi," Agricultural Water Management, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377418318572
    DOI: 10.1016/j.agwat.2019.105733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418318572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santesteban, L.G. & Miranda, C. & Royo, J.B., 2011. "Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. 'Tempranillo'," Agricultural Water Management, Elsevier, vol. 98(7), pages 1171-1179, May.
    2. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    3. Romero, Pascual & Botía, Pablo & Navarro, Josefa María, 2018. "Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions," Agricultural Water Management, Elsevier, vol. 209(C), pages 73-93.
    4. Orley Ashenfelter & Karl Storchmann, 2016. "Editor's Choice The Economics of Wine, Weather, and Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 25-46.
    5. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    6. Henry Kaiser, 1974. "An index of factorial simplicity," Psychometrika, Springer;The Psychometric Society, vol. 39(1), pages 31-36, March.
    7. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascual Romero Azorín & José García García, 2020. "The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Condit," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    2. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    3. Graveline, Nina & Grémont, Marine, 2021. "The role of perceptions, goals and characteristics of wine growers on irrigation adoption in the context of climate change," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    5. Pascual Romero Azorín & José García García, 2020. "The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Condit," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    6. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2019. "Performance of direct root-zone deficit irrigation on Vitis vinifera L. cv. Cabernet Sauvignon production and water use efficiency in semi-arid southcentral Washington," Agricultural Water Management, Elsevier, vol. 221(C), pages 47-57.
    7. Romero, Pascual & Botía, Pablo & Navarro, Josefa María, 2018. "Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions," Agricultural Water Management, Elsevier, vol. 209(C), pages 73-93.
    8. Santesteban, L.G. & Miranda, C. & Marín, D. & Sesma, B. & Intrigliolo, D.S. & Mirás-Avalos, J.M. & Escalona, J.M. & Montoro, A. & de Herralde, F. & Baeza, P. & Romero, P. & Yuste, J. & Uriarte, D. & M, 2019. "Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (Vitis vinifera L.)," Agricultural Water Management, Elsevier, vol. 221(C), pages 202-210.
    9. Fraga, Helder & Pinto, Joaquim G. & Santos, João A., 2020. "Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal," Agricultural Water Management, Elsevier, vol. 237(C).
    10. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    11. Xiaoxu Dong & Huawei Zhao & Tiancai Li, 2022. "The Role of Live-Streaming E-Commerce on Consumers’ Purchasing Intention regarding Green Agricultural Products," Sustainability, MDPI, vol. 14(7), pages 1-13, April.
    12. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.
    13. Pamela E. Ofori & Simplice A. Asongu & Vanessa S. Tchamyou, 2021. "The Synergy between Governance and Economic Integration in Promoting Female Economic Inclusion in Sub-Saharan Africa," Working Papers 21/071, European Xtramile Centre of African Studies (EXCAS).
    14. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    15. Simplice A. Asongu, 2014. "Knowledge Economy and Financial Sector Competition in African Countries," African Development Review, African Development Bank, vol. 26(2), pages 333-346, June.
    16. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    17. Chimere O. Iheonu, 2019. "Governance and Domestic Investment in Africa," Working Papers 19/001, European Xtramile Centre of African Studies (EXCAS).
    18. Rodríguez-Fuentes, Carlos Javier & Hernández-López, Montserrat, 1997. "Análisis de diferencias estructurales interregionales determinantes en el impacto de la política monetaria," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 7, pages 141-157, Junio.
    19. Douglas K. Bardsley & Annette M. Bardsley & Marco Conedera, 2023. "The dispersion of climate change impacts from viticulture in Ticino, Switzerland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-25, March.
    20. Asongu, Simplice & Tchamyou, Vanessa & Asongu, Ndemaze & Tchamyou, Nina, 2018. "The Comparative African Economics of Governance in Fighting Terrorism," MPRA Paper 92346, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377418318572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.