IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v149y2015icp55-73.html
   My bibliography  Save this article

Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation

Author

Listed:
  • Romero, Pascual
  • Muñoz, Rocío Gil
  • Fernández-Fernández, J.I.
  • del Amor, Francisco M.
  • Martínez-Cutillas, Adrián
  • García-García, José

Abstract

Regulated deficit irrigation (RDI) and partial root zone irrigation (PRI) were compared for four years (2009–2012), each at two different irrigation volumes (110mmyear−1 (1) and 78mmyear−1 (2)), in field-grown Monastrell grapevines grafted onto 1103P, in South Eastern Spain. The aim was to distinguish the effects of deficit irrigation per se from specific PRI effects (placement of water) on yield response and berry and wine quality. Vines grown with PRI-1 or RDI-1 received around 30% of the ETc from budburst to fruit set, 13–15% ETc from fruit set to véraison and 20% ETc from véraison to harvest. The RDI-2 and PRI-2 vines received around 20% ETc from budburst to fruit set, no irrigation from fruit set to véraison and a recovery (21-24% ETc) thereafter. In general, the PRI-2 and RDI-2 vines (the most-severely water-stressed) showed greater yield reduction and lower overall berry and wine quality (including technological and phenolic composition) than the moderately-water-stressed vines (RDI-1 and PRI-1). Compared to RDI-1, PRI-1 improved the yield response—increasing mean yield, cluster number per vine and berry weight and maintaining better bunch health at late ripening and a greater proportion of bigger bunches. In addition, PRI-1 increased the anthocyanin and amino acid concentrations of the berries and altered their composition, improving the phenolic and chromatic characteristics of the wine and enhancing the health-promoting value of the fruit. It was also the option most economically viable under the present conditions of the wine grape market, compared to RDI-1 and the rest of the treatments. In contrast, PRI-2, although it improved some technological quality attributes and phenolic and chromatic characteristics of Monastrell berries and wines compared to RDI-2, did not have a positive effect on yield (yield and cluster and berry weight decreased in some years) and its implementation was economically unviable under these soil and climatic conditions. The significant interaction between irrigation volume (high vs. low) and irrigation placement (PRI vs. RDI) indicate that the response to PRI also depended on the volume of water applied in the wet root zone and the soil total water availability.

Suggested Citation

  • Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
  • Handle: RePEc:eee:agiwat:v:149:y:2015:i:c:p:55-73
    DOI: 10.1016/j.agwat.2014.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414003382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santesteban, L.G. & Miranda, C. & Royo, J.B., 2011. "Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. 'Tempranillo'," Agricultural Water Management, Elsevier, vol. 98(7), pages 1171-1179, May.
    2. Hutton, R.J. & Loveys, B.R., 2011. "A partial root zone drying irrigation strategy for citrus--Effects on water use efficiency and fruit characteristics," Agricultural Water Management, Elsevier, vol. 98(10), pages 1485-1496, August.
    3. De la Hera, M.L. & Romero, P. & Gomez-Plaza, E. & Martinez, A., 2007. "Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions?," Agricultural Water Management, Elsevier, vol. 87(3), pages 261-274, February.
    4. Kirda, C. & Cetin, M. & Dasgan, Y. & Topcu, S. & Kaman, H. & Ekici, B. & Derici, M. R. & Ozguven, A. I., 2004. "Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation," Agricultural Water Management, Elsevier, vol. 69(3), pages 191-201, October.
    5. Romero, Pascual & Gil-Muñoz, Rocío & del Amor, Francisco M. & Valdés, Esperanza & Fernández, Jose Ignacio & Martinez-Cutillas, Adrián, 2013. "Regulated Deficit Irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines," Agricultural Water Management, Elsevier, vol. 121(C), pages 85-101.
    6. Intrigliolo, D.S. & Castel, J.R., 2009. "Response of Vitis vinifera cv. 'Tempranillo' to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality," Agricultural Water Management, Elsevier, vol. 96(2), pages 282-292, February.
    7. Spreer, W. & Nagle, M. & Neidhart, S. & Carle, R. & Ongprasert, S. & Muller, J., 2007. "Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. `Chok Anan')," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 173-180, March.
    8. Kaman, Harun & Kirda, Cevat & Sesveren, Sertan, 2011. "Genotypic differences of maize in grain yield response to deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 801-807, March.
    9. Yactayo, Wendy & Ramírez, David A. & Gutiérrez, Raymundo & Mares, Víctor & Posadas, Adolfo & Quiroz, Roberto, 2013. "Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 123(C), pages 65-70.
    10. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Hu, Xiaotao, 2006. "Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 41-52, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romero, Pascual & Botía, Pablo & del Amor, Francisco M. & Gil-Muñoz, Rocío & Flores, Pilar & Navarro, Josefa María, 2019. "Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting condi," Agricultural Water Management, Elsevier, vol. 225(C).
    2. Begoña García Castellanos & Benjamín García García & José García García, 2023. "Economic and Environmental Effects of Replacing Inorganic Fertilizers with Organic Fertilizers in Three Rainfed Crops in a Semi-Arid Area," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
    3. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    4. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    5. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    6. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Bassoi, Luís Henrique & de Melo Chaves, Agnaldo Rodrigues & Teixeira, Rafael Pombo, 2021. "Responses of 'Syrah' grapevine to deficit irrigation in the Brazilian semi-arid region," Agricultural Water Management, Elsevier, vol. 258(C).
    8. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    9. Ortega-Farias, Samuel & Villalobos-Soublett, Emilio & Riveros-Burgos, Camilo & Zúñiga, Mauricio & Ahumada-Orellana, Luis E., 2020. "Effect of irrigation cut-off strategies on yield, water productivity and gas exchange in a drip-irrigated hazelnut (Corylus avellana L. cv. Tonda di Giffoni) orchard under semiarid conditions," Agricultural Water Management, Elsevier, vol. 238(C).
    10. Romero, Pascual & Botía, Pablo & Navarro, Josefa María, 2018. "Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions," Agricultural Water Management, Elsevier, vol. 209(C), pages 73-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    3. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    4. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    5. Wei, Zhenhua & Du, Taisheng & Zhang, Juan & Xu, Shujun & Cambre, Paul J. & Davies, William J., 2016. "Carbon isotope discrimination shows a higher water use efficiency under alternate partial root-zone irrigation of field-grown tomato," Agricultural Water Management, Elsevier, vol. 165(C), pages 33-43.
    6. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    8. Romero, Pascual & Botía, Pablo & Navarro, Josefa María, 2018. "Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions," Agricultural Water Management, Elsevier, vol. 209(C), pages 73-93.
    9. Lizama, V. & Pérez-Álvarez, E.P. & Intrigliolo, D.S. & Chirivella, C. & Álvarez, I. & García-Esparza, M.J., 2021. "Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: II. Wine, skins, seeds, and grape aromatic composition," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Trigo-Córdoba, Emiliano & Bouzas-Cid, Yolanda & Orriols-Fernández, Ignacio & Mirás-Avalos, José Manuel, 2015. "Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain," Agricultural Water Management, Elsevier, vol. 161(C), pages 20-30.
    12. Li, Li & Wang, Yaosheng & Liu, Fulai, 2021. "Alternate partial root-zone N-fertigation increases water use efficiency and N uptake of barley at elevated CO2," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.
    14. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    15. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    16. Reinhard NOLZ & Willibald LOISKANDL & Gerhard KAMMERER & Margarita L. HIMMELBAUER, 2016. "Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(4), pages 250-258.
    17. Li, Fusheng & Yu, Jiangmin & Nong, Mengling & Kang, Shaozhong & Zhang, Jianhua, 2010. "Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers," Agricultural Water Management, Elsevier, vol. 97(2), pages 231-239, February.
    18. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    19. Pinillos, Virginia & Chiamolera, Fernando M. & Ortiz, Juan F. & Hueso, Juan J. & Cuevas, Julián, 2016. "Post-veraison regulated deficit irrigation in ‘Crimson Seedless’ table grape saves water and improves berry skin color," Agricultural Water Management, Elsevier, vol. 165(C), pages 181-189.
    20. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:149:y:2015:i:c:p:55-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.