IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i5p801-807.html
   My bibliography  Save this article

Genotypic differences of maize in grain yield response to deficit irrigation

Author

Listed:
  • Kaman, Harun
  • Kirda, Cevat
  • Sesveren, Sertan

Abstract

This study was undertaken to investigate genotypic differences of five maize cultivars in grain yield response to two different modes of deficit irrigation, conventional deficit irrigation and partial root zone irrigation. Three irrigation treatments were implemented: (1) FULL irrigation, the control treatment where plant water requirement, 100% Class-A pan evaporation, was fully met and the furrows on both sides of the plant rows were irrigated; (2) partial root zone irrigation (PRI), 35% deficit irrigation, compared to FULL treatment, was applied in every other furrow thus irrigating only one side of the plant rows. The furrows irrigated were alternated every irrigation; (3) conventional deficit irrigation (CDI), the same amount of water as PRI was applied in furrows on both sides of the plant rows, similar to FULL irrigation treatment. Five maize cultivars (P.31.G.98, P.3394, Rx:9292, Tector and Tietar) showing extreme growth response to water stress were selected out of ten cultivars tested with earlier completed greenhouse-pot experiment. A split-plot experimental design, comprising three irrigation treatments and five maize cultivars with four replicates, was used during two years of work, in 2005 and 2006. Total of nine irrigations, with one-week irrigation interval, were annually applied using a drip-irrigation system. Soil water status was monitored using a neutron moisture gauge, in addition to measuring leaf water potential and above-ground biomass production throughout the growing season. Grain yield and other yield attributes were measured at harvest as well as assessing differences in plant root distributions. Decrease in grain yield and harvest index of the tested cultivars, compared to FULL treatment, was proportionally less under PRI than CDI. Whether or not a significant yield advantage can be obtained under PRI compared to CDI showed significant (PÂ

Suggested Citation

  • Kaman, Harun & Kirda, Cevat & Sesveren, Sertan, 2011. "Genotypic differences of maize in grain yield response to deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 801-807, March.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:5:p:801-807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00382-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirda, C. & Cetin, M. & Dasgan, Y. & Topcu, S. & Kaman, H. & Ekici, B. & Derici, M. R. & Ozguven, A. I., 2004. "Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation," Agricultural Water Management, Elsevier, vol. 69(3), pages 191-201, October.
    2. Zegbe, J. A. & Behboudian, M. H. & Clothier, B. E., 2004. "Partial rootzone drying is a feasible option for irrigating processing tomatoes," Agricultural Water Management, Elsevier, vol. 68(3), pages 195-206, August.
    3. Pandey, R. K. & Maranville, J. W. & Chetima, M. M., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction," Agricultural Water Management, Elsevier, vol. 46(1), pages 15-27, November.
    4. Gencoglan, Cafer & Altunbey, Hasibe & Gencoglan, Serpil, 2006. "Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation," Agricultural Water Management, Elsevier, vol. 84(3), pages 274-280, August.
    5. Moser, Samuel B. & Feil, Boy & Jampatong, Sansern & Stamp, Peter, 2006. "Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 41-58, March.
    6. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    7. Kang, Shaozhong & Liang, Zongsuo & Pan, Yinhua & Shi, Peize & Zhang, Jianhua, 2000. "Alternate furrow irrigation for maize production in an arid area," Agricultural Water Management, Elsevier, vol. 45(3), pages 267-274, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    3. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    4. Li, Li & Wang, Yaosheng & Liu, Fulai, 2021. "Alternate partial root-zone N-fertigation increases water use efficiency and N uptake of barley at elevated CO2," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Domínguez, A. & Martínez-Navarro, A. & López-Mata, E. & Tarjuelo, J.M. & Martínez-Romero, A., 2017. "Real farm management depending on the available volume of irrigation water (part I): Financial analysis," Agricultural Water Management, Elsevier, vol. 192(C), pages 71-84.
    6. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    7. Wang, Xing-Chen & Liu, Rui & Luo, Jia-nan & Zhu, Peng-fei & Wang, Yao-sheng & Pan, Xiao-Cui & Shu, Liang-Zuo, 2022. "Effects of water and NPK fertigation on watermelon yield, quality, irrigation-water, and nutrient use efficiency under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    2. Qi, Dongliang & Hu, Tiantian & Liu, Tingting, 2020. "Biomass accumulation and distribution, yield formation and water use efficiency responses of maize (Zea mays L.) to nitrogen supply methods under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    3. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Hu, Xiaotao, 2006. "Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 41-52, July.
    4. Du, Taisheng & Kang, Shaozhong & Sun, Jingsheng & Zhang, Xiying & Zhang, Jianhua, 2010. "An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China," Agricultural Water Management, Elsevier, vol. 97(1), pages 66-74, January.
    5. Topak, Ramazan & Acar, Bilal & Uyanöz, Refik & Ceyhan, Ercan, 2016. "Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 176(C), pages 180-190.
    6. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Robel Admasu & Abraham W Michael & Tilahun Hordofa, 2019. "Senior Irrigation Researcher, Melkassa Agricultural Research Center, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 83-87, January.
    8. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
    9. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    10. Zhou, Qingyun & Kang, Shaozhong & Li, Fusheng & Zhang, Lu, 2008. "Comparison of dynamic and static APRI-models to simulate soil water dynamics in a vineyard over the growing season under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(7), pages 767-775, July.
    11. Wei, Zhenhua & Du, Taisheng & Zhang, Juan & Xu, Shujun & Cambre, Paul J. & Davies, William J., 2016. "Carbon isotope discrimination shows a higher water use efficiency under alternate partial root-zone irrigation of field-grown tomato," Agricultural Water Management, Elsevier, vol. 165(C), pages 33-43.
    12. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).
    13. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    14. Yang, Lijuan & Qu, Hui & Zhang, Yulong & Li, Fusheng, 2012. "Effects of partial root-zone irrigation on physiology, fruit yield and quality and water use efficiency of tomato under different calcium levels," Agricultural Water Management, Elsevier, vol. 104(C), pages 89-94.
    15. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    16. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    17. Hu, Tiantian & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua, 2009. "Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize," Agricultural Water Management, Elsevier, vol. 96(2), pages 208-214, February.
    18. Xiao, Yu & Zhang, Jing & Jia, Ting Ting & Pang, Xiao Pan & Guo, Zheng Gang, 2015. "Effects of alternate furrow irrigation on the biomass and quality of alfalfa (Medicago sativa)," Agricultural Water Management, Elsevier, vol. 161(C), pages 147-154.
    19. Gencoglan, Cafer & Altunbey, Hasibe & Gencoglan, Serpil, 2006. "Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation," Agricultural Water Management, Elsevier, vol. 84(3), pages 274-280, August.
    20. Barrios-Masias, Felipe H. & Jackson, Louise E., 2016. "Increasing the effective use of water in processing tomatoes through alternate furrow irrigation without a yield decrease," Agricultural Water Management, Elsevier, vol. 177(C), pages 107-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:5:p:801-807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.