IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16897-d1301279.html
   My bibliography  Save this article

Economic and Environmental Effects of Replacing Inorganic Fertilizers with Organic Fertilizers in Three Rainfed Crops in a Semi-Arid Area

Author

Listed:
  • Begoña García Castellanos

    (Bioeconomy Group, Murcian Institute for Agricultural and Environmental Research and Development (IMIDA), 30150 Murcia, Spain)

  • Benjamín García García

    (Bioeconomy Group, Murcian Institute for Agricultural and Environmental Research and Development (IMIDA), 30150 Murcia, Spain)

  • José García García

    (Bioeconomy Group, Murcian Institute for Agricultural and Environmental Research and Development (IMIDA), 30150 Murcia, Spain)

Abstract

This study evaluates the economic and environmental effects of replacing inorganic fertilization with organic fertilization (manure and compost) in three characteristic crops of the rainfed land of southeastern Spain: almond, olive, and barley. To do this, the conventional cultivation model of the three production systems was established and analyzed through the LCC (Life Cycle Costing) and LCA (Life Cycle Assessment) methodologies. Next, a sensitivity analysis was performed to see the effects of the substitution. In the three conventional systems, inorganic fertilizers represent at least 11% of the total costs. At the same time, they are the element with the greatest global contribution to environmental impacts (between 60 and 88%). Through the sensitivity analysis, it was shown that tillage practices that involve the addition of manure or compost not only reduce costs for the three crops (with a maximum reduction of EUR 88/ha in the case of olive trees with compost application), but also most of the impact categories evaluated. In terms of global warming, the reduction varies from 2–9% depending on the crop and the organic fertilizer used. And if we take into account that the production of inorganic fertilizers is avoided, the results of this category decrease between 28% and 48%.

Suggested Citation

  • Begoña García Castellanos & Benjamín García García & José García García, 2023. "Economic and Environmental Effects of Replacing Inorganic Fertilizers with Organic Fertilizers in Three Rainfed Crops in a Semi-Arid Area," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16897-:d:1301279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    2. Aguilera, Eduardo & Díaz-Gaona, Cipriano & García-Laureano, Raquel & Reyes-Palomo, Carolina & Guzmán, Gloria I. & Ortolani, Livia & Sánchez-Rodríguez, Manuel & Rodríguez-Estévez, Vicente, 2020. "Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review," Agricultural Systems, Elsevier, vol. 181(C).
    3. De Leijster, V. & Verburg, R.W. & Santos, M.J. & Wassen, M.J. & Martínez-Mena, M. & de Vente, J. & Verweij, P.A., 2020. "Almond farm profitability under agroecological management in south-eastern Spain: Accounting for externalities and opportunity costs," Agricultural Systems, Elsevier, vol. 183(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    2. Romero, Pascual & Botía, Pablo & del Amor, Francisco M. & Gil-Muñoz, Rocío & Flores, Pilar & Navarro, Josefa María, 2019. "Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting condi," Agricultural Water Management, Elsevier, vol. 225(C).
    3. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    4. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    5. Zagaria, Cecilia & Schulp, Catharina J.E. & Malek, Žiga & Verburg, Peter H., 2023. "Potential for land and water management adaptations in Mediterranean croplands under climate change," Agricultural Systems, Elsevier, vol. 205(C).
    6. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    7. Dardonville, Manon & Legrand, Baptiste & Clivot, Hugues & Bernardin, Claire & Bockstaller, Christian & Therond, Olivier, 2022. "Assessment of ecosystem services and natural capital dynamics in agroecosystems," Ecosystem Services, Elsevier, vol. 54(C).
    8. Rudi Hessel & Guido Wyseure & Ioanna S. Panagea & Abdallah Alaoui & Mark S. Reed & Hedwig van Delden & Melanie Muro & Jane Mills & Oene Oenema & Francisco Areal & Erik van den Elsen & Simone Verzandvo, 2022. "Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe," Land, MDPI, vol. 11(6), pages 1-27, May.
    9. De Leijster, V. & Verburg, R.W. & Santos, M.J. & Wassen, M.J. & Martínez-Mena, M. & de Vente, J. & Verweij, P.A., 2020. "Almond farm profitability under agroecological management in south-eastern Spain: Accounting for externalities and opportunity costs," Agricultural Systems, Elsevier, vol. 183(C).
    10. Bassoi, Luís Henrique & de Melo Chaves, Agnaldo Rodrigues & Teixeira, Rafael Pombo, 2021. "Responses of 'Syrah' grapevine to deficit irrigation in the Brazilian semi-arid region," Agricultural Water Management, Elsevier, vol. 258(C).
    11. Ortega-Farias, Samuel & Villalobos-Soublett, Emilio & Riveros-Burgos, Camilo & Zúñiga, Mauricio & Ahumada-Orellana, Luis E., 2020. "Effect of irrigation cut-off strategies on yield, water productivity and gas exchange in a drip-irrigated hazelnut (Corylus avellana L. cv. Tonda di Giffoni) orchard under semiarid conditions," Agricultural Water Management, Elsevier, vol. 238(C).
    12. Claudia de Brito Quadros Gonçalves & Madalena Maria Schlindwein & Gabrielli do Carmo Martinelli, 2021. "Agroforestry Systems: A Systematic Review Focusing on Traditional Indigenous Practices, Food and Nutrition Security, Economic Viability, and the Role of Women," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    13. Romero, Pascual & Botía, Pablo & Navarro, Josefa María, 2018. "Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions," Agricultural Water Management, Elsevier, vol. 209(C), pages 73-93.
    14. Qizhi Wang & Maofang Gao & Huijie Zhang, 2022. "Agroecological Efficiency Evaluation Based on Multi-Source Remote Sensing Data in a Typical County of the Tibetan Plateau," Land, MDPI, vol. 11(4), pages 1-24, April.
    15. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    16. Annalisa De Boni & Antonia D’Amico & Claudio Acciani & Rocco Roma, 2022. "Crop Diversification and Resilience of Drought-Resistant Species in Semi-Arid Areas: An Economic and Environmental Analysis," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
    17. Samane Ghazali & Hossein Azadi & Kristina Janečková & Petr Sklenička & Alishir Kurban & Sedef Cakir, 2021. "Indigenous knowledge about climate change and sustainability of nomadic livelihoods: understanding adaptability coping strategies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16744-16768, November.
    18. Manuel González-Rosado & Luis Parras-Alcántara & Jesús Aguilera-Huertas & Beatriz Lozano-García, 2021. "Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
    19. Khalep, Yurii & Moskalenko, Anatolii, 2020. "Ecological and economic aspects of the efficiency of Polissia organic plant models," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 6(4), December.
    20. Chrysanthi Charatsari & Evagelos D. Lioutas & Afroditi Papadaki-Klavdianou & Alex Koutsouris & Anastasios Michailidis, 2022. "Experiential, Social, Connectivist, or Transformative Learning? Farm Advisors and the Construction of Agroecological Knowledge," Sustainability, MDPI, vol. 14(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16897-:d:1301279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.