IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v237y2020ics0378377419311680.html
   My bibliography  Save this article

Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal

Author

Listed:
  • Fraga, Helder
  • Pinto, Joaquim G.
  • Santos, João A.

Abstract

Climate change projections for Southern Europe reveal warming and drying trends for the upcoming decades, bringing important challenges to Portuguese olive orchards in particular. We analyzed irrigation as an adaptation measure to ensure the future sustainability of olive tree yields in Alentejo, the main olive producing area in Portugal. A dynamic crop model was used to simulate olive tree yields over the baseline (1981–2005) and two future scenarios (RCP4.5 and RCP8.5, 2021–2080), using a 4 member-ensemble of state-of-the-art climate model chains. Climate change projections point to an increase in mean temperature (of up to 2 °C by 2080) and potential evapotranspiration (40−50 mm), while a decrease in precipitation (-80 to −90 mm) and actual evapotranspiration (-50 to −70 mm), under both future scenarios. Future yield decreases 15–20% (for RCP4.5 and RCP8.5) and accumulated losses can reach -8 t/ha to −10 t/ha by 2080. This decrease is due to enhanced heat and water stress under future climate conditions. As an adaptation measure, irrigation was simulated, but only applied at a certain water stress level. The results indicate higher yields due to this adaptation strategy, in range with the present values (±1%), thus alleviating the projected yield decreases in the future. The amount of water required for irrigation ranges from 60 to 85 mm, depending on the RCP, which corresponds to 0.6–1 times the projected decrease in precipitation. However, this value can reach up to 2 times for one climate model chain. We conclude that while irrigation is a feasible adaptation measure against the threats of climate change in Alentejo olive orchards, this strategy may be threatened by the scarcity of water resources. Outlining appropriate, timely and cost-effective adaptation measures is critical for the sustainability of both the environment and the Alentejo olive sector.

Suggested Citation

  • Fraga, Helder & Pinto, Joaquim G. & Santos, João A., 2020. "Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal," Agricultural Water Management, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:agiwat:v:237:y:2020:i:c:s0378377419311680
    DOI: 10.1016/j.agwat.2020.106193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419311680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fraga, Helder & Santos, João A., 2018. "Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal," Agricultural Systems, Elsevier, vol. 164(C), pages 107-115.
    2. João A. Santos & Ricardo Costa & Helder Fraga, 2017. "Climate change impacts on thermal growing conditions of main fruit species in Portugal," Climatic Change, Springer, vol. 140(2), pages 273-286, January.
    3. Marino, Giulia & Pernice, Fulvio & Marra, Francesco Paolo & Caruso, Tiziano, 2016. "Validation of an online system for the continuous monitoring of tree water status for sustainable irrigation managements in olive (Olea europaea L.)," Agricultural Water Management, Elsevier, vol. 177(C), pages 298-307.
    4. Helder Fraga & Joaquim G. Pinto & João A. Santos, 2019. "Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: a multi-model assessment," Climatic Change, Springer, vol. 152(1), pages 179-193, January.
    5. Wang, Yaosheng & Jensen, Christian R. & Liu, Fulai, 2017. "Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 254-259.
    6. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    7. F. Orlandi & H. Garcia-Mozo & A. Dhiab & C. Galán & M. Msallem & B. Romano & M. Abichou & E. Dominguez-Vilches & M. Fornaciari, 2013. "Climatic indices in the interpretation of the phenological phases of the olive in mediterranean areas during its biological cycle," Climatic Change, Springer, vol. 116(2), pages 263-284, January.
    8. Ghrab, Mohamed & Gargouri, Kamel & Bentaher, Hatem & Chartzoulakis, Kostas & Ayadi, Mohamed & Ben Mimoun, Mehdi & Masmoudi, Mohamed Moncef & Ben Mechlia, Netij & Psarras, Georgios, 2013. "Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate," Agricultural Water Management, Elsevier, vol. 123(C), pages 1-11.
    9. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    10. Maselli, Fabio & Chiesi, Marta & Brilli, Lorenzo & Moriondo, Marco, 2012. "Simulation of olive fruit yield in Tuscany through the integration of remote sensing and ground data," Ecological Modelling, Elsevier, vol. 244(C), pages 1-12.
    11. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo Flores Ribeiro & José Lima Santos, 2023. "Exploring the Effects of Climate Change on Farming System Choice: A Farm-Level Space-for-Time Approach," Land, MDPI, vol. 12(12), pages 1-15, November.
    2. Teresa R. Freitas & João A. Santos & Ana P. Silva & André Fonseca & Helder Fraga, 2023. "Evaluation of historical and future thermal conditions for almond trees in north-eastern Portugal," Climatic Change, Springer, vol. 176(7), pages 1-21, July.
    3. Antonio Alberto Rodríguez Sousa & Jesús M. Barandica & Pedro A. Aguilera & Alejandro J. Rescia, 2020. "Examining Potential Environmental Consequences of Climate Change and Other Driving Forces on the Sustainability of Spanish Olive Groves under a Socio-Ecological Approach," Agriculture, MDPI, vol. 10(11), pages 1-22, October.
    4. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Sofiene B. M. Hammami & Manel Ben Laya & Narjes Baazaoui & Besma Sghaier-Hammami, 2022. "Vegetative Growth Dynamic and Its Impact on the Flowering Intensity of the Following Season Depend on Water Availability and Bearing Status of the Olive Tree," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    6. Antonio Alberto Rodríguez Sousa & Claudia Tribaldos-Anda & Sergio A. Prats & Clarisse Brígido & José Muñoz-Rojas & Alejandro J. Rescia, 2022. "Impacts of Fertilization on Environmental Quality across a Gradient of Olive Grove Management Systems in Alentejo (Portugal)," Land, MDPI, vol. 11(12), pages 1-19, December.
    7. Iglesias, Maria Agustina & Rousseaux, M. Cecilia & Agüero Alcaras, L. Martín & Hamze, Leila & Searles, Peter S., 2023. "Influence of deficit irrigation and warming on plant water status during the late winter and spring in young olive trees," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romero, Pascual & Botía, Pablo & del Amor, Francisco M. & Gil-Muñoz, Rocío & Flores, Pilar & Navarro, Josefa María, 2019. "Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting condi," Agricultural Water Management, Elsevier, vol. 225(C).
    2. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Tocados-Franco, Enrique & Berbel, Julio & Expósito, Alfonso, 2023. "Water policy implications of perennial expansion in the Guadalquivir River Basin (southern Spain)," Agricultural Water Management, Elsevier, vol. 282(C).
    4. Teresa R. Freitas & João A. Santos & Ana P. Silva & Helder Fraga, 2023. "Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees ( Prunus dulcis )," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    5. Naulleau, Audrey & Gary, Christian & Prévot, Laurent & Vinatier, Fabrice & Hossard, Laure, 2022. "How can winegrowers adapt to climate change? A participatory modeling approach in southern France," Agricultural Systems, Elsevier, vol. 203(C).
    6. Fraga, Helder & Santos, João A., 2018. "Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal," Agricultural Systems, Elsevier, vol. 164(C), pages 107-115.
    7. Teresa R. Freitas & João A. Santos & Ana P. Silva & André Fonseca & Helder Fraga, 2023. "Evaluation of historical and future thermal conditions for almond trees in north-eastern Portugal," Climatic Change, Springer, vol. 176(7), pages 1-21, July.
    8. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2019. "Performance of direct root-zone deficit irrigation on Vitis vinifera L. cv. Cabernet Sauvignon production and water use efficiency in semi-arid southcentral Washington," Agricultural Water Management, Elsevier, vol. 221(C), pages 47-57.
    9. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    10. Manolis G. Grillakis & Evangelos G. Kapetanakis & Eleni Goumenaki, 2022. "Climate change implications for olive flowering in Crete, Greece: projections based on historical data," Climatic Change, Springer, vol. 175(1), pages 1-18, November.
    11. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    12. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    13. Chehab, Hechmi & Tekaya, Mariem & Mechri, Beligh & Jemai, Abdelmajid & Guiaa, Mohamed & Mahjoub, Zoubeir & Boujnah, Dalenda & Laamari, Salwa & Chihaoui, Badreddine & Zakhama, Houda & Hammami, Mohamed , 2017. "Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia," Agricultural Water Management, Elsevier, vol. 192(C), pages 221-231.
    14. Douglas K. Bardsley & Annette M. Bardsley & Marco Conedera, 2023. "The dispersion of climate change impacts from viticulture in Ticino, Switzerland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-25, March.
    15. Elliott R. Dossou-Yovo & Sander J. Zwart & Amadou Kouyaté & Ibrahima Ouédraogo & Oladele Bakare, 2018. "Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    16. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    17. Nikolaos Gourgouletis & Marianna Gkavrou & Evangelos Baltas, 2023. "Comparison of Empirical ETo Relationships with ERA5-Land and In Situ Data in Greece," Geographies, MDPI, vol. 3(3), pages 1-23, August.
    18. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    19. Mark A. Anthony & Leho Tedersoo & Bruno Vos & Luc Croisé & Henning Meesenburg & Markus Wagner & Henning Andreae & Frank Jacob & Paweł Lech & Anna Kowalska & Martin Greve & Genoveva Popova & Beat Frey , 2024. "Fungal community composition predicts forest carbon storage at a continental scale," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:237:y:2020:i:c:s0378377419311680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.