IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/214646.html
   My bibliography  Save this article

Decarbonizing China’s energy system – Modeling the transformation of the electricity, transportation, heat, and industrial sectors

Author

Listed:
  • Burandt, Thorsten
  • Xiong, Bobby
  • Löffler, Konstantin
  • Oei, Pao-Yu

Abstract

Growing prosperity among its population and an inherent increasing demand for energy complicate China’s target of combating climate change, while maintaining its economic growth. This paper, therefore, describes three potential decarbonization pathways to analyze different effects for the electricity, transport, heating, and industrial sectors until 2050. Using an enhanced version of the multi-sectoral, open-source Global Energy System Model, enables us to assess the impact of different CO2 budgets on the upcoming energy system transformation. A detailed provincial resolution allows for the implementation of regional characteristics and disparities within China. Conclusively, we complement the model-based analysis with a quantitative assessment of current barriers for the needed transformation. Results indicate that overall energy system CO2 emissions and in particular coal usage have to be reduced drastically to meet (inter-) national climate targets. Specifically, coal consumption has to decrease by around 60% in 2050 compared to 2015. The current Nationally Determined Contributions proposed by the Chinese government of peaking emissions in 2030 are, therefore, not sufficient to comply with a global CO2 budget in line with the Paris Agreement. Renewable energies, in particular photovoltaics and onshore wind, profit from decreasing costs and can provide a more sustainable and cheaper energy source. Furthermore, increased stakeholder interactions and incentives are needed to mitigate the resistance of local actors against a low-carbon transformation.

Suggested Citation

  • Burandt, Thorsten & Xiong, Bobby & Löffler, Konstantin & Oei, Pao-Yu, 2019. "Decarbonizing China’s energy system – Modeling the transformation of the electricity, transportation, heat, and industrial sectors," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 255, pages 1-17.
  • Handle: RePEc:zbw:espost:214646
    DOI: 10.1016/j.apenergy.2019.113820
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/214646/1/1-s2.0-S0306261919315077-main.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karlo Hainsch & Thorsten Burandt & Claudia Kemfert & Konstantin Löffler & Pao-Yu Oei & Christian von Hirschhausen, 2018. "Emission Pathways Towards a Low-Carbon Energy System for Europe: A Model-Based Analysis of Decarbonization Scenarios," Discussion Papers of DIW Berlin 1745, DIW Berlin, German Institute for Economic Research.
    2. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    3. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    4. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    5. Arent, Douglas & Arndt, Channing & Miller, Mackay & Tarp, Finn & Zinaman, Owen (ed.), 2017. "The Political Economy of Clean Energy Transitions," OUP Catalogue, Oxford University Press, number 9780198802242.
    6. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Qian & Lang Sun & Quanyi Qiu & Lina Tang & Xiaoqi Shang & Chengxiu Lu, 2020. "Analysis of CO 2 Drivers and Emissions Forecast in a Typical Industry-Oriented County: Changxing County, China," Energies, MDPI, vol. 13(5), pages 1-21, March.
    2. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    3. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    4. Andrew Crossland & Keith Scoles & Allen Wang & Chris Groves & Susan Sun, 2020. "Assessment of Electricity Decarbonization Scenarios for New Zealand and Great Britain using a Plant Dispatch and Electrical Energy Storage Modelling Framework," Energies, MDPI, vol. 13(11), pages 1-19, June.
    5. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    6. Mei, H. & Li, Y.P. & Suo, C. & Ma, Y. & Lv, J., 2020. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China," Applied Energy, Elsevier, vol. 262(C).
    7. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Fredrik Ege Abrahamsen & Sturla Grina Ruud & Alemayehu Gebremedhin, 2020. "Moving Toward a Sustainable Energy System: A Case Study of Viken County of Norway," Energies, MDPI, vol. 13(22), pages 1-16, November.
    9. Fan, Xing & Zhang, Wen & Chen, Weiwei & Chen, Bin, 2020. "Land–water–energy nexus in agricultural management for greenhouse gas mitigation," Applied Energy, Elsevier, vol. 265(C).
    10. Wang, Xiaokui & Bamisile, Olusola & Chen, Shuheng & Xu, Xiao & Luo, Shihua & Huang, Qi & Hu, Weihao, 2022. "Decarbonization of China's electricity systems with hydropower penetration and pumped-hydro storage: Comparing the policies with a techno-economic analysis," Renewable Energy, Elsevier, vol. 196(C), pages 65-83.
    11. Lohr, C. & Schlemminger, M. & Peterssen, F. & Bensmann, A. & Niepelt, R. & Brendel, R. & Hanke-Rauschenbach, R., 2022. "Spatial concentration of renewables in energy system optimization models," Renewable Energy, Elsevier, vol. 198(C), pages 144-154.
    12. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 130, pages 1-1.
    13. Lei Xu & Zongfei Wang & Hasan Ümitcan Yilmaz & Witold-Roger Poganietz & Hongtao Ren & Ying Guo, 2021. "Considering the Impacts of Metal Depletion on the European Electricity System," Energies, MDPI, vol. 14(6), pages 1-14, March.
    14. Maximiliano Lainfiesta Herrera & Hassan S. Hayajneh & Xuewei Zhang, 2021. "DC Communities: Transformative Building Blocks of the Emerging Energy Infrastructure," Energies, MDPI, vol. 14(22), pages 1-8, November.
    15. Li, Jianglong & Huang, Jiashun, 2020. "The expansion of China's solar energy: Challenges and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Hainsch, Karlo & Löffler, Konstantin & Burandt, Thorsten & Auer, Hans & Crespo del Granado, Pedro & Pisciella, Paolo & Zwickl-Bernhard, Sebastian, 2022. "Energy transition scenarios: What policies, societal attitudes, and technology developments will realize the EU Green Deal?," Energy, Elsevier, vol. 239(PC).
    17. Jan Fořt & Jiří Šál & Jaroslav Žák & Robert Černý, 2020. "Assessment of Wood-Based Fly Ash as Alternative Cement Replacement," Sustainability, MDPI, vol. 12(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu, 2019. "Modeling the low-carbon transition of the European energy system - A quantitative assessment of the stranded assets problem," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 26, pages 1-15.
    2. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    3. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    4. Stephan Kigle & Michael Ebner & Andrej Guminski, 2022. "Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    5. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    6. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    7. Ram, Manish & Aghahosseini, Arman & Breyer, Christian, 2020. "Job creation during the global energy transition towards 100% renewable power system by 2050," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    8. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    9. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Cheng, Cheng & Nadolny, Anna, 2021. "A zero-carbon, reliable and affordable energy future in Australia," Energy, Elsevier, vol. 220(C).
    10. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu & Seehaus, Frederik & Wejda, Felix, 2022. "Chances and barriers for Germany's low carbon transition - Quantifying uncertainties in key influential factors," Energy, Elsevier, vol. 239(PA).
    11. Lucas Bretschger & Karen Pittel, 2019. "Twenty Key Questions in Environmental and Resource Economics," CER-ETH Economics working paper series 19/328, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    12. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    13. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    14. Sarmiento, Luis & Burandt, Thorsten & Löffler, Konstantin & Oei, Pao-Yu, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2019), pages 1-1.
    15. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
    16. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    18. Mauleón, Ignacio, 2019. "Assessing PV and wind roadmaps: Learning rates, risk, and social discounting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 71-89.
    19. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    20. Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2022. "Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador," Renewable Energy, Elsevier, vol. 182(C), pages 314-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:214646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.