IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v13y2010i03ns0219525910002591.html
   My bibliography  Save this article

Instability Of Portfolio Optimization Under Coherent Risk Measures

Author

Listed:
  • IMRE KONDOR

    (Collegium Budapest — Institute for Advanced Study, Szentháromság u. 2, H-1014 Budapest, Hungary;
    Department of Physics of Complex Systems, Eötvös University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary)

  • ISTVÁN VARGA-HASZONITS

    (Department of Physics of Complex Systems, Eötvös University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary;
    Analytics Department of Fixed Income Division, Morgan Stanley Hungary Analytics, Deák Ferenc u. 15, H-1052 Budapest, Hungary)

Abstract

It is shown that the axioms for coherent risk measures imply that whenever there is a pair of portfolios such that one of them dominates the other in a given sample (which happens with finite probability even for large samples), then there is no optimal portfolio under any coherent measure on that sample, and the risk measure diverges to minus infinity. This instability was first discovered in the special example of Expected Shortfall which is used here both as an illustration and as a springboard for generalization.

Suggested Citation

  • Imre Kondor & István Varga-Haszonits, 2010. "Instability Of Portfolio Optimization Under Coherent Risk Measures," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 425-437.
  • Handle: RePEc:wsi:acsxxx:v:13:y:2010:i:03:n:s0219525910002591
    DOI: 10.1142/S0219525910002591
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219525910002591
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219525910002591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sverre Grepperud & Pål Andreas Pedersen, 2001. "The Crowding-out of Work Ethics," Studies in Economics 0102, School of Economics, University of Kent.
    2. Pål Andreas Pedersen, 2001. "A Game Theoretical Approach to Road Safety," Studies in Economics 0105, School of Economics, University of Kent.
    3. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    2. Papp, Gábor & Caccioli, Fabio & Kondor, Imre, 2019. "Bias-variance trade-off in portfolio optimization under expected shortfall with ℓ 2 regularization," LSE Research Online Documents on Economics 100294, London School of Economics and Political Science, LSE Library.
    3. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2014. "$L_p$ regularized portfolio optimization," Papers 1404.4040, arXiv.org.
    4. Papp, Gábor & Kondor, Imre & Caccioli, Fabio, 2021. "Optimizing expected shortfall under an ℓ1 constraint—an analytic approach," LSE Research Online Documents on Economics 111051, London School of Economics and Political Science, LSE Library.
    5. G'abor Papp & Fabio Caccioli & Imre Kondor, 2016. "Bias-variance trade-off in portfolio optimization under Expected Shortfall with $\ell_2$ regularization," Papers 1602.08297, arXiv.org, revised Jul 2018.
    6. Caccioli, Fabio & Kondor, Imre & Papp, Gábor, 2015. "Portfolio optimization under expected shortfall: contour maps of estimation error," LSE Research Online Documents on Economics 119463, London School of Economics and Political Science, LSE Library.
    7. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    8. Imre Kondor, 2014. "Estimation Error of Expected Shortfall," Papers 1402.5534, arXiv.org.
    9. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2016. "Liquidity Risk And Instabilities In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-28, August.
    10. Imre Kondor & Fabio Caccioli & G'abor Papp & Matteo Marsili, 2015. "Contour map of estimation error for Expected Shortfall," Papers 1502.06217, arXiv.org.
    11. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    12. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    13. Axel Pruser & Imre Kondor & Andreas Engel, 2021. "Aspects of a phase transition in high-dimensional random geometry," Papers 2105.04395, arXiv.org, revised Jun 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    3. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    4. Karma, Otto & Sander, Priit, 2006. "The impact of financial leverage on risk of equity measured by loss-oriented risk measures: An option pricing approach," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1340-1356, December.
    5. Casper G. de Vries & Gennady Samorodnitsky & Bjørn N. Jorgensen & Sarma Mandira & Jon Danielsson, 2005. "Subadditivity Re–Examined: the Case for Value-at-Risk," FMG Discussion Papers dp549, Financial Markets Group.
    6. Xu Chen & Xuan Di & Zechu Li, 2023. "Social Learning for Sequential Driving Dilemmas," Games, MDPI, vol. 14(3), pages 1-12, May.
    7. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2014. "$L_p$ regularized portfolio optimization," Papers 1404.4040, arXiv.org.
    8. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, September.
    9. Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators: VaR, TCE, and Beyond," Risks, MDPI, vol. 10(8), pages 1-19, July.
    10. Ellis, Scott & Sharma, Satish & Brzeszczyński, Janusz, 2022. "Systemic risk measures and regulatory challenges," Journal of Financial Stability, Elsevier, vol. 61(C).
    11. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    12. Hela Mzoughi & Faysal Mansouri, 2013. "Computing risk measures for non-normal asset returns using Copula theory," The Empirical Econometrics and Quantitative Economics Letters, Faculty of Economics, Chiang Mai University, vol. 2(1), pages 59-70, March.
    13. Lan-chih Ho & John Cadle & Michael Theobald, 2008. "Portfolio selection in an expected shortfall framework during the recent ‘credit crunch’ period," Journal of Asset Management, Palgrave Macmillan, vol. 9(2), pages 121-137, July.
    14. Ching-Sung Wu & Chih-Sheng Hsu, 2013. "Linking International High-Tech New Ventures' Firm Life Cycle To Internationalization, Organizational Learning, And Alliance Networks," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 175-197.
    15. Emmanuel Olateju Oyatoye & Waheed Oladimeji Arilesere, 2012. "A non-linear programming model for insurance company investment portfolio management in Nigeria," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 4(1), pages 83-100.
    16. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    17. Kirsten L. MacDonald & Robert J. Bianchi & Michael E. Drew, 2020. "Equity risk versus retirement adequacy: asset allocation solutions for KiwiSaver," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3851-3873, December.
    18. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    19. Alexis Bonnet & Isabelle Nagot, 2005. "Methodology of measuring performance in alternative investment," Cahiers de la Maison des Sciences Economiques b05078, Université Panthéon-Sorbonne (Paris 1).
    20. Deepak K. Jadhav & Ramanathan Thekke Variyam, 2023. "Modified Expected Shortfall: a Coherent Risk Measure for Elliptical Family of Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 234-256, May.

    More about this item

    Keywords

    Coherent risk measures; portfolio optimization; expected shortfall; financial risk; estimation; 89.65.Gh; 89.75.-k; 02.60.Nm; G11; C13; D81;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:13:y:2010:i:03:n:s0219525910002591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.