IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v37y2017i8p1477-1494.html
   My bibliography  Save this article

Robustness Assessment of Urban Road Network with Consideration of Multiple Hazard Events

Author

Listed:
  • Yaoming Zhou
  • Jiuh‐Biing Sheu
  • Junwei Wang

Abstract

Robustness measures a system's ability of being insensitive to disturbances. Previous studies assessed the robustness of transportation networks to a single disturbance without considering simultaneously happening multiple events. The purpose of this article is to address this problem and propose a new framework to assess the robustness of an urban transportation network. The framework consists of two layers. The upper layer is to define the robustness index based on the impact evaluation in different scenarios obtained from the lower layer, whereas the lower layer is to evaluate the performance of each hypothetical disrupted road network given by the upper layer. The upper layer has two varieties, that is, robustness against random failure and robustness against intentional attacks. This robustness measurement framework is validated by application to a real‐world urban road network in Hong Kong. The results show that the robustness of a transport network with consideration of multiple events is quite different from and more comprehensive than that with consideration of only a single disruption. We also propose a Monte Carlo method and a heuristic algorithm to handle different scenarios with multiple hazard events, which is proved to be quite efficient. This methodology can also be applied to conduct risk analysis of other systems where multiple failures or disruptions exist.

Suggested Citation

  • Yaoming Zhou & Jiuh‐Biing Sheu & Junwei Wang, 2017. "Robustness Assessment of Urban Road Network with Consideration of Multiple Hazard Events," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1477-1494, August.
  • Handle: RePEc:wly:riskan:v:37:y:2017:i:8:p:1477-1494
    DOI: 10.1111/risa.12802
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12802
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    2. Morohosi, Hozumi, 2010. "Measuring the network robustness by Monte Carlo estimation of shortest path length distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 551-559.
    3. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    4. Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
    5. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    6. Zhao, Chunxue & Fu, Baibai & Wang, Tianming, 2014. "Braess paradox and robustness of traffic networks under stochastic user equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 135-141.
    7. Susana Freiria & Alexandre O. Tavares & Rui Pedro Julião, 2015. "The Multiscale Importance of Road Segments in a Network Disruption Scenario: A Risk‐Based Approach," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 484-500, March.
    8. Snelder, M. & van Zuylen, H.J. & Immers, L.H., 2012. "A framework for robustness analysis of road networks for short term variations in supply," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 828-842.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Greenberg & Anthony Cox & Vicki Bier & Jim Lambert & Karen Lowrie & Warner North & Michael Siegrist & Felicia Wu, 2020. "Risk Analysis: Celebrating the Accomplishments and Embracing Ongoing Challenges," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2113-2127, November.
    2. Junwei Wang & Su Xiu Xu & Gangyan Xu, 2020. "Intelligent decision making for service and manufacturing industries," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2089-2090, December.
    3. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    4. Bingxue Qian & Ning Zhang, 2022. "Topology and Robustness of Weighted Air Transport Networks in Multi-Airport Region," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    5. Tsan‐Ming Choi & James H. Lambert, 2017. "Advances in Risk Analysis with Big Data," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1435-1442, August.
    6. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    7. Zhou, Yaoming & Wang, Junwei & Huang, George Q., 2019. "Efficiency and robustness of weighted air transport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 14-26.
    8. Wei, Na & Xie, Wen-Jie & Zhou, Wei-Xing, 2022. "Robustness of the international oil trade network under targeted attacks to economies," Energy, Elsevier, vol. 251(C).
    9. Zhou, Yaoming & Wang, Junwei & Sheu, Jiuh-Biing, 2019. "On connectivity of post-earthquake road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 1-16.
    10. Sun, Wei & Yu, Yang & Wang, Junwei, 2019. "Heterogeneous vehicle pickup and delivery problems: Formulation and exact solution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 181-202.
    11. Yu, Yang & Wang, Sihan & Wang, Junwei & Huang, Min, 2019. "A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 511-527.
    12. Wang, Junwei & Zhou, Yaoming & Huang, George Q., 2019. "Alternative pair in the airport network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 408-418.
    13. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    14. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    15. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Chen, Siyuan & Qin, Shaoyang, 2022. "Identifying the critical road combination in urban roads network under multiple disruption scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    2. Cats, O. & Yap, M. & van Oort, N., 2016. "Exposing the role of exposure: Public transport network risk analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 1-14.
    3. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    4. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    5. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 119-145.
    6. Oliveira, Eduardo Leal de & Portugal, Licínio da Silva & Porto Junior, Walter, 2016. "Indicators of reliability and vulnerability: Similarities and differences in ranking links of a complex road system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 195-208.
    7. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    8. Jing, Weiwei & Xu, Xiangdong & Pu, Yichao, 2020. "Route redundancy-based approach to identify the critical stations in metro networks: A mean-excess probability measure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
    10. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    11. Zhu, Jingjing & Xu, Xiangdong & Wang, Zijian, 2023. "Economic evaluation of redundancy design for transportation networks under disruptions: Framework and case study," Transport Policy, Elsevier, vol. 142(C), pages 70-83.
    12. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    13. Federico Karagulian & Gaetano Valenti & Carlo Liberto & Matteo Corazza, 2022. "A Methodology to Estimate Functional Vulnerability Using Floating Car Data," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    14. Yu Miao & Anning Ni, 2019. "Vulnerability Analysis of Intercity Multimode Transportation Networks; A Case Study of the Yangtze River Delta," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    15. Kermanshah, A. & Derrible, S., 2016. "A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 39-49.
    16. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    17. Yi Shen & Gang Ren & Bin Ran, 2021. "Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China," Transportation, Springer, vol. 48(2), pages 537-553, April.
    18. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    20. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:37:y:2017:i:8:p:1477-1494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.