IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v607y2022ics0378437122007506.html
   My bibliography  Save this article

Identifying the critical road combination in urban roads network under multiple disruption scenarios

Author

Listed:
  • Jin, Kun
  • Wang, Wei
  • Li, Xinran
  • Hua, Xuedong
  • Chen, Siyuan
  • Qin, Shaoyang

Abstract

The promising approach to ensure the robustness of the road network is to identify the critical roads. Previous researches mainly focus on the identification of single critical road. Nevertheless, the impact of one road seems to be limited, and the more practical problem is to figure out the critical road combination wherein multiple roads failures may lead to the serious collapse of a road network. This paper develops a rigorous, extensible, mathematical model to identify the critical combination of roads in urban road networks for multiple disruption scenarios. Specifically, we propose a bi-level mixed-integer nonlinear problem (MINLP) model, which is challenging to solve due to its NP-hard characters. Then the transformation and linearization of constraints help simplify the formula into a single-level mixed-integer linear problem (MILP) formula. Finally, the Nguyen and Sioux Falls networks are sufficiently tested under multiple scenarios with different levels of disruption rate and travel demand. The results confirmed the validity and superiority of the proposed model. From the numerical results, it is more practical to measure the robustness of the road network than topological analysis. Besides, the most critical combination with multiple-link failures is not simply the combination of most critical roads with single-link failure, and these roads are not necessarily connected or in the neighborhood of each other. The results also correctly evaluate the impact of disconnection, which could provide advice for managers with preferences for accessibility and travel time.

Suggested Citation

  • Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Chen, Siyuan & Qin, Shaoyang, 2022. "Identifying the critical road combination in urban roads network under multiple disruption scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  • Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007506
    DOI: 10.1016/j.physa.2022.128192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122007506
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaoming Zhou & Jiuh‐Biing Sheu & Junwei Wang, 2017. "Robustness Assessment of Urban Road Network with Consideration of Multiple Hazard Events," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1477-1494, August.
    2. Michael Taylor & Somenahalli Sekhar & Glen D'Este, 2006. "Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks," Networks and Spatial Economics, Springer, vol. 6(3), pages 267-291, September.
    3. Akbarzadeh, Meisam & Salehi Reihani, Sayed Farzin & Samani, Keivan Aghababaei, 2019. "Detecting critical links of urban networks using cluster detection methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 288-298.
    4. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    5. Liu, Zhizhen & Chen, Hong & Liu, Enze & Hu, Wanyu, 2022. "Exploring the resilience assessment framework of urban road network for sustainable cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    6. Zhu, Shanjiang & Levinson, David & Liu, Henry X. & Harder, Kathleen, 2010. "The traffic and behavioral effects of the I-35W Mississippi River bridge collapse," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 771-784, December.
    7. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    8. Dou, Bing-Lin & Wang, Xue-Guang & Zhang, Shi-Yong, 2010. "Robustness of networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2310-2317.
    9. Feng Xie & David Levinson, 2011. "Evaluating the effects of the I-35W bridge collapse on road-users in the twin cities metropolitan region," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(7), pages 691-703, April.
    10. An, Xin-lei & Zhang, Li & Zhang, Jian-gang, 2015. "Research on urban public traffic network with multi-weights based on single bus transfer junction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 748-755.
    11. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    12. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    13. Knoop, Victor L. & Snelder, Maaike & van Zuylen, Henk J. & Hoogendoorn, Serge P., 2012. "Link-level vulnerability indicators for real-world networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 843-854.
    14. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    15. Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
    16. Xueyan Wei & Wei Wang & Weijie Yu & Xuedong Hua & Yun Xiang, 2020. "A Stochastic User Equilibrium Model Under Traffic Rationing Based on Mode Shifting Rate," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iliopoulou, Christina & Makridis, Michail A., 2023. "Critical multi-link disruption identification for public transport networks: A multi-objective optimization framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Guo, Bao & Li, Minglun & Zhou, Mengnan & Zhang, Fan & Wang, Pu, 2023. "A new anomalous travel demand prediction method combining Markov model and complex network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliveira, Eduardo Leal de & Portugal, Licínio da Silva & Porto Junior, Walter, 2016. "Indicators of reliability and vulnerability: Similarities and differences in ranking links of a complex road system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 195-208.
    2. Khademi, Navid & Babaei, Mohsen & Schmöcker, Jan-Dirk & Fani, Amirhossein, 2018. "Analysis of incident costs in a vulnerable sparse rail network – Description and Iran case study," Research in Transportation Economics, Elsevier, vol. 70(C), pages 9-27.
    3. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    4. Alireza Mostafizi & Haizhong Wang & Dan Cox & Lori A. Cramer & Shangjia Dong, 2017. "Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1347-1372, September.
    5. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    7. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    8. Nima Haghighi & S. Kiavash Fayyaz & Xiaoyue Cathy Liu & Tony H. Grubesic & Ran Wei, 2018. "A Multi-Scenario Probabilistic Simulation Approach for Critical Transportation Network Risk Assessment," Networks and Spatial Economics, Springer, vol. 18(1), pages 181-203, March.
    9. Ortega, Emilio & Martín, Belén & Aparicio, Ángel, 2020. "Identification of critical sections of the Spanish transport system due to climate scenarios," Journal of Transport Geography, Elsevier, vol. 84(C).
    10. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    11. Ghavami, Seyed Morsal, 2019. "Multi-criteria spatial decision support system for identifying strategic roads in disaster situations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 23-36.
    12. Almotahari, Amirmasoud & Yazici, M. Anil, 2019. "A link criticality index embedded in the convex combinations solution of user equilibrium traffic assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 67-82.
    13. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    14. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    15. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    16. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    17. Juan Carlos García-Palomares & Javier Gutiérrez & Juan Carlos Martín & Borja Moya-Gómez, 2018. "An analysis of the Spanish high capacity road network criticality," Transportation, Springer, vol. 45(4), pages 1139-1159, July.
    18. Caterina Malandri & Luca Mantecchini & Filippo Paganelli & Maria Nadia Postorino, 2021. "Public Transport Network Vulnerability and Delay Distribution among Travelers," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    19. Demirel, Hande & Kompil, Mert & Nemry, Françoise, 2015. "A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 62-76.
    20. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.