IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v67y2020i7p573-591.html
   My bibliography  Save this article

Two‐agent scheduling with linear resource‐dependent processing times

Author

Listed:
  • Dujuan Wang
  • Yugang Yu
  • Huaxin Qiu
  • Yunqiang Yin
  • T. C. E. Cheng

Abstract

This paper considers a two‐agent scheduling problem with linear resource‐dependent processing times, in which each agent has a set of jobs that compete with that of the other agent for the use of a common processing machine, and each agent aims to minimize the weighted number of its tardy jobs. To meet the due date requirements of the jobs of the two agents, additional amounts of a common resource, which may be in discrete or continuous quantities, can be allocated to the processing of the jobs to compress their processing durations. The actual processing time of a job is a linear function of the amount of the resource allocated to it. The objective is to determine the optimal job sequence and resource allocation strategy so as to minimize the weighted number of tardy jobs of one agent, while keeping the weighted number of tardy jobs of the other agent, and the total resource consumption cost within their respective predetermined limits. It is shown that the problem is NP‐hard in the ordinary sense, and there does not exist a polynomial‐time approximation algorithm with performance ratio unless P=NP; however it admits a relaxed fully polynomial time approximation scheme. A proximal bundle algorithm based on Lagrangian relaxation is also presented to solve the problem approximately. To speed up convergence and produce sharp bounds, enhancement strategies including the design of a Tabu search algorithm and integration of a Lagrangian recovery heuristic into the algorithm are devised. Extensive numerical studies are conducted to assess the effectiveness and efficiency of the proposed algorithms.

Suggested Citation

  • Dujuan Wang & Yugang Yu & Huaxin Qiu & Yunqiang Yin & T. C. E. Cheng, 2020. "Two‐agent scheduling with linear resource‐dependent processing times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 573-591, October.
  • Handle: RePEc:wly:navres:v:67:y:2020:i:7:p:573-591
    DOI: 10.1002/nav.21936
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21936
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T.C.E. Cheng & Zhi‐Long Chen & Chung‐Lun Li & B.M.‐T. Lin, 1998. "Scheduling to minimize the total compression and late costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(1), pages 67-82, February.
    2. Dujuan Wang & Yunqiang Yin & T.C.E. Cheng, 2017. "A bicriterion approach to common flow allowances due window assignment and scheduling with controllable processing times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 41-63, February.
    3. Tadumadze, Giorgi & Boysen, Nils & Emde, Simon & Weidinger, Felix, 2019. "Integrated truck and workforce scheduling to accelerate the unloading of trucks," European Journal of Operational Research, Elsevier, vol. 278(1), pages 343-362.
    4. Tadumadze, Giorgi & Boysen, Nils & Emde, Simon & Weidinger, Felix, 2019. "Integrated truck and workforce scheduling to accelerate the unloading of trucks," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 112842, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Yunqiang Yin & Du‐Juan Wang & Chin‐Chia Wu & T.C.E. Cheng, 2016. "CON/SLK due date assignment and scheduling on a single machine with two agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 416-429, August.
    6. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    7. Yang, Dar-Li & Lai, Chien-Jung & Yang, Suh-Jenq, 2014. "Scheduling problems with multiple due windows assignment and controllable processing times on a single machine," International Journal of Production Economics, Elsevier, vol. 150(C), pages 96-103.
    8. Wang, Jun-Qiang & Fan, Guo-Qiang & Zhang, Yingqian & Zhang, Cheng-Wu & Leung, Joseph Y.-T., 2017. "Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes," European Journal of Operational Research, Elsevier, vol. 258(2), pages 478-490.
    9. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    10. Dvir Shabtay & George Steiner, 2007. "Optimal Due Date Assignment and Resource Allocation to Minimize the Weighted Number of Tardy Jobs on a Single Machine," Manufacturing & Service Operations Management, INFORMS, vol. 9(3), pages 332-350, March.
    11. Xinyu Sun & Xin-Na Geng & Ji-Bo Wang & Feng Liu, 2019. "Convex resource allocation scheduling in the no-wait flowshop with common flow allowance and learning effect," International Journal of Production Research, Taylor & Francis Journals, vol. 57(6), pages 1873-1891, March.
    12. Mor, Baruch & Mosheiov, Gur, 2011. "Single machine batch scheduling with two competing agents to minimize total flowtime," European Journal of Operational Research, Elsevier, vol. 215(3), pages 524-531, December.
    13. Mikhail Y. Kovalyov & Dmitrij Šešok, 2019. "Two-agent scheduling with deteriorating jobs on a single parallel-batching machine: refining computational complexity," Journal of Scheduling, Springer, vol. 22(5), pages 603-606, October.
    14. Janiak, Adam & Kovalyov, Mikhail Y., 1996. "Single machine scheduling subject to deadlines and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 94(2), pages 284-291, October.
    15. Yaron Leyvand & Dvir Shabtay & George Steiner, 2010. "Optimal delivery time quotation to minimize total tardiness penalties with controllable processing times," IISE Transactions, Taylor & Francis Journals, vol. 42(3), pages 221-231.
    16. Yunqiang Yin & Youhua Chen & Kaida Qin & Dujuan Wang, 2019. "Two-agent scheduling on unrelated parallel machines with total completion time and weighted number of tardy jobs criteria," Journal of Scheduling, Springer, vol. 22(3), pages 315-333, June.
    17. Wan, Guohua & Vakati, Sudheer R. & Leung, Joseph Y.-T. & Pinedo, Michael, 2010. "Scheduling two agents with controllable processing times," European Journal of Operational Research, Elsevier, vol. 205(3), pages 528-539, September.
    18. Zhi-Long Chen, 2004. "Simultaneous Job Scheduling and Resource Allocation on Parallel Machines," Annals of Operations Research, Springer, vol. 129(1), pages 135-153, July.
    19. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    20. Yunqiang Yin & Yongjian Yang & Dujuan Wang & T.C.E. Cheng & Chin‐Chia Wu, 2018. "Integrated production, inventory, and batch delivery scheduling with due date assignment and two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 393-409, August.
    21. Tang, Lixin & Zhao, Xiaoli & Liu, Jiyin & Leung, Joseph Y.-T., 2017. "Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine," European Journal of Operational Research, Elsevier, vol. 263(2), pages 401-411.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xin & Miao, Qian & Lin, Bertrand M.T. & Sterna, Malgorzata & Blazewicz, Jacek, 2022. "Two-machine flow shop scheduling with a common due date to maximize total early work," European Journal of Operational Research, Elsevier, vol. 300(2), pages 504-511.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byung-Cheon Choi & Myoung-Ju Park, 2020. "Scheduling two projects with controllable processing times in a single-machine environment," Journal of Scheduling, Springer, vol. 23(5), pages 619-628, October.
    2. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    3. Yunqiang Yin & Yongjian Yang & Dujuan Wang & T.C.E. Cheng & Chin‐Chia Wu, 2018. "Integrated production, inventory, and batch delivery scheduling with due date assignment and two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 393-409, August.
    4. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    5. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    6. Jun Pei & Jinling Wei & Baoyu Liao & Xinbao Liu & Panos M. Pardalos, 2020. "Two-agent scheduling on bounded parallel-batching machines with an aging effect of job-position-dependent," Annals of Operations Research, Springer, vol. 294(1), pages 191-223, November.
    7. Yunqiang Yin & Youhua Chen & Kaida Qin & Dujuan Wang, 2019. "Two-agent scheduling on unrelated parallel machines with total completion time and weighted number of tardy jobs criteria," Journal of Scheduling, Springer, vol. 22(3), pages 315-333, June.
    8. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    9. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    10. Dujuan Wang & Yunqiang Yin & T.C.E. Cheng, 2017. "A bicriterion approach to common flow allowances due window assignment and scheduling with controllable processing times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 41-63, February.
    11. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    12. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    13. Yunqiang Yin & Du‐Juan Wang & Chin‐Chia Wu & T.C.E. Cheng, 2016. "CON/SLK due date assignment and scheduling on a single machine with two agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 416-429, August.
    14. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    15. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    16. Baruch Mor, 2022. "Minmax common flow-allowance problems with convex resource allocation and position-dependent workloads," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 79-97, January.
    17. Gao, Yuan & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2019. "A further study on two-agent parallel-batch scheduling with release dates and deteriorating jobs to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 273(1), pages 74-81.
    18. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    19. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    20. Lei Pan & Xinyu Sun & Ji-Bo Wang & Li-Han Zhang & Dan-Yang Lv, 2023. "Due date assignment single-machine scheduling with delivery times, position-dependent weights and deteriorating jobs," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-16, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:67:y:2020:i:7:p:573-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.