IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v294y2020i1d10.1007_s10479-019-03160-y.html
   My bibliography  Save this article

Two-agent scheduling on bounded parallel-batching machines with an aging effect of job-position-dependent

Author

Listed:
  • Jun Pei

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education
    University of Florida)

  • Jinling Wei

    (Hefei University of Technology)

  • Baoyu Liao

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education)

  • Xinbao Liu

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-making of Ministry of Education)

  • Panos M. Pardalos

    (University of Florida)

Abstract

This paper investigates a competitive two-agent parallel-batching scheduling problem with aging effect on parallel machines. The objective is to minimize the makespan of agent A with the constraint that the makespan of agent B is no more than a given threshold. Some key structural properties are first identified in two different cases, and based on these structural properties a novel decision tree of scheduling rules is constructed and a heuristic algorithm is designed. Then, an effective hybrid BF-VNS algorithm combining Bacterial Foraging (BF) with variable neighborhood search (VNS) is developed to tackle the studied problem. Computational experiments are conducted to evaluate the performance of the proposed hybrid algorithm and some other well-known algorithms. The experimental results indicate that the hybrid BF-VNS algorithm performs quite better than the compared algorithms.

Suggested Citation

  • Jun Pei & Jinling Wei & Baoyu Liao & Xinbao Liu & Panos M. Pardalos, 2020. "Two-agent scheduling on bounded parallel-batching machines with an aging effect of job-position-dependent," Annals of Operations Research, Springer, vol. 294(1), pages 191-223, November.
  • Handle: RePEc:spr:annopr:v:294:y:2020:i:1:d:10.1007_s10479-019-03160-y
    DOI: 10.1007/s10479-019-03160-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03160-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03160-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Pei & Xinbao Liu & Panos M. Pardalos & Wenjuan Fan & Shanlin Yang, 2017. "Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times," Annals of Operations Research, Springer, vol. 249(1), pages 175-195, February.
    2. Mosheiov, Gur & Oron, Daniel, 2008. "A single machine batch scheduling problem with bounded batch size," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1069-1079, June.
    3. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    4. S Gawiejnowicz & W-C Lee & C-L Lin & C-C Wu, 2011. "Single-machine scheduling of proportionally deteriorating jobs by two agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1983-1991, November.
    5. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    6. Onur Ozturk & Mehmet A. Begen & Gregory S. Zaric, 2017. "A branch and bound algorithm for scheduling unit size jobs on parallel batching machines to minimize makespan," International Journal of Production Research, Taylor & Francis Journals, vol. 55(6), pages 1815-1831, March.
    7. Mor, Baruch & Mosheiov, Gur, 2011. "Single machine batch scheduling with two competing agents to minimize total flowtime," European Journal of Operational Research, Elsevier, vol. 215(3), pages 524-531, December.
    8. Cheng, T.C.E. & Ng, C.T. & Yuan, J.J., 2008. "Multi-agent scheduling on a single machine with max-form criteria," European Journal of Operational Research, Elsevier, vol. 188(2), pages 603-609, July.
    9. Arbib, Claudio & Marinelli, Fabrizio & Pezzella, Ferdinando, 2012. "An LP-based tabu search for batch scheduling in a cutting process with finite buffers," International Journal of Production Economics, Elsevier, vol. 136(2), pages 287-296.
    10. Manzhan Gu & Jinwei Gu & Xiwen Lu, 2018. "An algorithm for multi-agent scheduling to minimize the makespan on m parallel machines," Journal of Scheduling, Springer, vol. 21(5), pages 483-492, October.
    11. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    12. S Gawiejnowicz & W-C Lee & C-L Lin & C-C Wu, 2011. "Single-machine scheduling of proportionally deteriorating jobs by two agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1983-1991, November.
    13. Mosheiov, Gur, 2001. "Scheduling problems with a learning effect," European Journal of Operational Research, Elsevier, vol. 132(3), pages 687-693, August.
    14. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    15. Wan, Guohua & Vakati, Sudheer R. & Leung, Joseph Y.-T. & Pinedo, Michael, 2010. "Scheduling two agents with controllable processing times," European Journal of Operational Research, Elsevier, vol. 205(3), pages 528-539, September.
    16. A Bachman & A Janiak, 2004. "Scheduling jobs with position-dependent processing times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(3), pages 257-264, March.
    17. Pei, Jun & Pardalos, Panos M. & Liu, Xinbao & Fan, Wenjuan & Yang, Shanlin, 2015. "Serial batching scheduling of deteriorating jobs in a two-stage supply chain to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 244(1), pages 13-25.
    18. Byung-Cheon Choi & Myoung-Ju Park, 2015. "A Batch Scheduling Problem with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-19, December.
    19. Wang, Jun-Qiang & Fan, Guo-Qiang & Zhang, Yingqian & Zhang, Cheng-Wu & Leung, Joseph Y.-T., 2017. "Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes," European Journal of Operational Research, Elsevier, vol. 258(2), pages 478-490.
    20. Barketau, M.S. & Cheng, T.C.E. & Kovalyov, M.Y., 2008. "Batch scheduling of deteriorating reworkables," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1317-1326, September.
    21. Zhenyou Wang & Cai-Min Wei & Yu-Bin Wu, 2016. "Single Machine Two-Agent Scheduling with Deteriorating Jobs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-17, October.
    22. Tang, Lixin & Zhao, Xiaoli & Liu, Jiyin & Leung, Joseph Y.-T., 2017. "Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine," European Journal of Operational Research, Elsevier, vol. 263(2), pages 401-411.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Sun & Tao Liu & Xin-Na Geng & Yang Hu & Jing-Xiao Xu, 2023. "Optimization of scheduling problems with deterioration effects and an optional maintenance activity," Journal of Scheduling, Springer, vol. 26(3), pages 251-266, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    2. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    3. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    4. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    5. Ren-Xia Chen & Shi-Sheng Li, 2019. "Two-agent single-machine scheduling with cumulative deterioration," 4OR, Springer, vol. 17(2), pages 201-219, June.
    6. Yaodong Ni & Zhaojun Zhao, 2017. "Two-agent scheduling problem under fuzzy environment," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 739-748, March.
    7. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    8. Cheng He & Joseph Y.-T. Leung, 2017. "Two-agent scheduling of time-dependent jobs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 362-377, August.
    9. Pei, Jun & Liu, Xinbao & Fan, Wenjuan & Pardalos, Panos M. & Lu, Shaojun, 2019. "A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers," Omega, Elsevier, vol. 82(C), pages 55-69.
    10. Dujuan Wang & Yugang Yu & Huaxin Qiu & Yunqiang Yin & T. C. E. Cheng, 2020. "Two‐agent scheduling with linear resource‐dependent processing times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 573-591, October.
    11. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    12. Cheng He & Chunqi Xu & Hao Lin, 2020. "Serial-batching scheduling with two agents to minimize makespan and maximum cost," Journal of Scheduling, Springer, vol. 23(5), pages 609-617, October.
    13. Wan, Long & Mei, Jiajie & Du, Jiangze, 2021. "Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 290(1), pages 26-35.
    14. Mor, Baruch & Mosheiov, Gur, 2011. "Single machine batch scheduling with two competing agents to minimize total flowtime," European Journal of Operational Research, Elsevier, vol. 215(3), pages 524-531, December.
    15. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    16. Baruch Mor & Gur Mosheiov, 2017. "A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1454-1468, May.
    17. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    18. Tang, Lixin & Zhao, Xiaoli & Liu, Jiyin & Leung, Joseph Y.-T., 2017. "Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine," European Journal of Operational Research, Elsevier, vol. 263(2), pages 401-411.
    19. Enrique Gerstl & Gur Mosheiov, 2014. "Single machine just‐in‐time scheduling problems with two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 1-16, February.
    20. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:294:y:2020:i:1:d:10.1007_s10479-019-03160-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.