IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v8y2018i3p402-428.html
   My bibliography  Save this article

Sulfur trioxide formation/emissions in coal‐fired air‐ and oxy‐fuel combustion processes: a review

Author

Listed:
  • Yerbol Sarbassov
  • Lunbo Duan
  • Vasilije Manovic
  • Edward J. Anthony

Abstract

In oxy‐fuel combustion, fuel is burned using oxygen together with recycled flue gas, which is needed to control the combustion temperature. This leads to higher concentrations of sulfur dioxide and sulfur trioxide in the recycled gas, which can result in the formation of sulfuric acid and enhanced corrosion. Current experimental data on SO3 formation, reaction mechanisms, and mathematical modelling have indicated significant differences in SO3 formation between air‐ and oxy‐fuel combustion for both the wet and dry flue gas recycle options. This paper provides an extensive review of sulfur trioxide formation in air‐ and oxy‐fuel combustion environments, with an emphasis on coal‐fired systems. The first part summarizes recent findings on oxy‐fuel combustion experiments, as they affect sulfur trioxide formation. In the second part, the review focuses on sulfur trioxide formation mechanisms, and the influence of catalysis on sulfur trioxide formation. Finally, the current methods for measuring sulfur trioxide concentration are also reviewed along with the major difficulties associated with those measurements using data available from both bench‐ and pilot‐scale units. © 2018 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Yerbol Sarbassov & Lunbo Duan & Vasilije Manovic & Edward J. Anthony, 2018. "Sulfur trioxide formation/emissions in coal‐fired air‐ and oxy‐fuel combustion processes: a review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 402-428, June.
  • Handle: RePEc:wly:greenh:v:8:y:2018:i:3:p:402-428
    DOI: 10.1002/ghg.1767
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1767
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Hao & Shao, Yingjuan, 2010. "Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant," Applied Energy, Elsevier, vol. 87(10), pages 3162-3170, October.
    2. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    3. Hu, Yukun & Yan, Jinyue, 2012. "Characterization of flue gas in oxy-coal combustion processes for CO2 capture," Applied Energy, Elsevier, vol. 90(1), pages 113-121.
    4. Li, H. & Yan, J. & Yan, J. & Anheden, M., 2009. "Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system," Applied Energy, Elsevier, vol. 86(2), pages 202-213, February.
    5. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Hai-bo & Xu, Ming-xin & Li, Yan-bing & Wu, Jin-hua & Shen, Jian-chong & Liao, Haiyan, 2020. "Experimental research on the process of compression and purification of CO2 in oxy-fuel combustion," Applied Energy, Elsevier, vol. 259(C).
    2. Chen, Wei-Hsin & Tsai, Ming-Hang & Hung, Chen-I, 2013. "Numerical prediction of CO2 capture process by a single droplet in alkaline spray," Applied Energy, Elsevier, vol. 109(C), pages 125-134.
    3. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
    4. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
    5. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    6. Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
    7. Wang, B. & Sun, L.S. & Su, S. & Xiang, J. & Hu, S. & Fei, H., 2012. "A kinetic study of NO formation during oxy-fuel combustion of pyridine," Applied Energy, Elsevier, vol. 92(C), pages 361-368.
    8. Gupta, Sapna & Adams, Joseph J. & Wilson, Jamie R. & Eddings, Eric G. & Mahapatra, Manoj K. & Singh, Prabhakar, 2016. "Performance and post-test characterization of an OTM system in an experimental coal gasifier," Applied Energy, Elsevier, vol. 165(C), pages 72-80.
    9. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    10. Aydin, Gokhan & Karakurt, Izzet & Aydiner, Kerim, 2010. "Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety," Energy Policy, Elsevier, vol. 38(9), pages 5072-5080, September.
    11. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Multi-objective optimization of coal-fired electricity production with CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 266-272.
    12. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.
    13. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    14. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    15. Hu, Yukun & Li, Xun & Li, Hailong & Yan, Jinyue, 2013. "Peak and off-peak operations of the air separation unit in oxy-coal combustion power generation systems," Applied Energy, Elsevier, vol. 112(C), pages 747-754.
    16. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2012. "Influence of droplet mutual interaction on carbon dioxide capture process in sprays," Applied Energy, Elsevier, vol. 92(C), pages 185-193.
    17. Yi, Baojun & Zhang, Liqi & Huang, Fang & Mao, Zhihui & Zheng, Chuguang, 2014. "Effect of H2O on the combustion characteristics of pulverized coal in O2/CO2 atmosphere," Applied Energy, Elsevier, vol. 132(C), pages 349-357.
    18. Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
    19. Zhong, Jinjin & Jiang, Xi, 2017. "A case study of using cosmic ray muons to monitor supercritical CO2 migration in geological formations," Applied Energy, Elsevier, vol. 185(P2), pages 1450-1458.
    20. Hu, Yukun & Yan, Jinyue, 2012. "Characterization of flue gas in oxy-coal combustion processes for CO2 capture," Applied Energy, Elsevier, vol. 90(1), pages 113-121.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:8:y:2018:i:3:p:402-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.