IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v132y2014icp349-357.html
   My bibliography  Save this article

Effect of H2O on the combustion characteristics of pulverized coal in O2/CO2 atmosphere

Author

Listed:
  • Yi, Baojun
  • Zhang, Liqi
  • Huang, Fang
  • Mao, Zhihui
  • Zheng, Chuguang

Abstract

The H2O concentration in real oxy-fuel combustion atmospheres is significantly higher than that in conventional air combustion, which strongly affects the combustion characteristics of pulverized coal. This study studies the effect of H2O on pulverized coal combustion behaviour in O2/CO2 atmosphere. The ignition temperature, burnout temperature and comprehensive reactivity of three types of Chinese coal at different H2O and O2 concentrations in O2/CO2/H2O atmosphere were investigated. The effect of particle size and heating rate on the pulverized coal combustion was also studied under high-H2O-concentration oxy-fuel atmosphere. The results showed that the presence of H2O strongly affects the combustion characteristics of coal and coal char in O2/CO2 atmosphere, leading to a greater ignition delay, faster burnout and higher comprehensive reactivity. These changes are more obvious for brown coal. Under O2/CO2/H2O atmosphere, H2O can improve the diffusivity and heat capacity of the combustion atmosphere and therefore has a positive effect on pulverized coal combustion. In addition, based on a comparison of the combustion reactivity between O2/CO2 atmosphere with and without H2O, the mechanism of coal combustion reactivity in H2O-containing atmosphere is significantly related to the heating rate.

Suggested Citation

  • Yi, Baojun & Zhang, Liqi & Huang, Fang & Mao, Zhihui & Zheng, Chuguang, 2014. "Effect of H2O on the combustion characteristics of pulverized coal in O2/CO2 atmosphere," Applied Energy, Elsevier, vol. 132(C), pages 349-357.
  • Handle: RePEc:eee:appene:v:132:y:2014:i:c:p:349-357
    DOI: 10.1016/j.apenergy.2014.07.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914007120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riaza, J. & Álvarez, L. & Gil, M.V. & Pevida, C. & Pis, J.J. & Rubiera, F., 2011. "Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor," Energy, Elsevier, vol. 36(8), pages 5314-5319.
    2. Liu, Hao & Shao, Yingjuan, 2010. "Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant," Applied Energy, Elsevier, vol. 87(10), pages 3162-3170, October.
    3. Wang, Chang’an & Zhang, Xiaoming & Liu, Yinhe & Che, Defu, 2012. "Pyrolysis and combustion characteristics of coals in oxyfuel combustion," Applied Energy, Elsevier, vol. 97(C), pages 264-273.
    4. Bu, Changsheng & Liu, Daoyin & Chen, Xiaoping & Pallarès, David & Gómez-Barea, Alberto, 2014. "Ignition behavior of single coal particle in a fluidized bed under O2/CO2 and O2/N2 atmospheres: A combination of visual image and particle temperature," Applied Energy, Elsevier, vol. 115(C), pages 301-308.
    5. Duan, Lunbo & Jiang, Zhongxiao & Chen, Xiaoping & Zhao, Changsui, 2013. "Investigation on water vapor effect on direct sulfation during wet-recycle oxy-coal combustion," Applied Energy, Elsevier, vol. 108(C), pages 121-127.
    6. Hu, Yukun & Yan, Jinyue, 2012. "Characterization of flue gas in oxy-coal combustion processes for CO2 capture," Applied Energy, Elsevier, vol. 90(1), pages 113-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vadim Dorokhov & Geniy Kuznetsov & Galina Nyashina, 2022. "Combustion of Coal and Coal Slime in Steam-Air Environment and in Slurry Form," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Zhao, Zhenghong & Zhang, Zewu & Zha, Xiaojian & Gao, Ge & Li, Xiaoshan & Wu, Fan & Luo, Cong & Zhang, Liqi, 2023. "Internal association between combustion behavior and NOx emissions of pulverized coal MILD-oxy combustion affected by adding H2O," Energy, Elsevier, vol. 263(PD).
    3. Mao, Zhihui & Zhang, Liqi & Zhu, Xinyang & Pan, Cong & Yi, Baojun & Zheng, Chuguang, 2016. "Modeling of an oxy-coal flame under a steam-rich atmosphere," Applied Energy, Elsevier, vol. 161(C), pages 112-123.
    4. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    5. Mostafa, Mohamed E. & He, Limo & Xu, Jun & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "Investigating the effect of integrated CO2 and H2O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM)," Energy, Elsevier, vol. 179(C), pages 343-357.
    6. Kai Lei & Buqing Ye & Jin Cao & Rui Zhang & Dong Liu, 2017. "Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O 2 /N 2 , O 2 /CO 2 , and O 2 /H 2 O Atmospheres," Energies, MDPI, vol. 10(11), pages 1-12, October.
    7. Xu, Jun & Su, Sheng & Sun, Zhijun & Qing, Mengxia & Xiong, Zhe & Wang, Yi & Jiang, Long & Hu, Song & Xiang, Jun, 2016. "Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy-steam combustion process," Applied Energy, Elsevier, vol. 182(C), pages 20-28.
    8. Chen, Sheng & Liu, Hao & Zheng, Chuguang, 2017. "Methane combustion in MILD oxyfuel regime: Influences of dilution atmosphere in co-flow configuration," Energy, Elsevier, vol. 121(C), pages 159-175.
    9. Abdelhafez, Ahmed & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2018. "Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor," Applied Energy, Elsevier, vol. 215(C), pages 63-74.
    10. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
    2. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
    3. Wu, Hai-bo & Xu, Ming-xin & Li, Yan-bing & Wu, Jin-hua & Shen, Jian-chong & Liao, Haiyan, 2020. "Experimental research on the process of compression and purification of CO2 in oxy-fuel combustion," Applied Energy, Elsevier, vol. 259(C).
    4. Xu, Yishu & Liu, Xiaowei & Zhou, Zijian & Sheng, Lei & Wang, Chao & Xu, Minghou, 2014. "The role of steam in silica vaporization and ultrafine particulate matter formation during wet oxy-coal combustion," Applied Energy, Elsevier, vol. 133(C), pages 144-151.
    5. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    6. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    7. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    8. Gil, María V. & Riaza, Juan & Álvarez, Lucía & Pevida, Covadonga & Rubiera, Fernando, 2015. "Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity," Energy, Elsevier, vol. 91(C), pages 655-662.
    9. Huang, Xiaohong & Hu, Fan & Liu, Xuhui & Liu, Zhaohui, 2022. "Structure and reactivity of chars prepared from low-volatile coal under O2/N2 and O2/CO2 conditions in a flat-flame assisted entrained flow reactor," Energy, Elsevier, vol. 261(PB).
    10. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    11. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    12. Yerbol Sarbassov & Lunbo Duan & Vasilije Manovic & Edward J. Anthony, 2018. "Sulfur trioxide formation/emissions in coal‐fired air‐ and oxy‐fuel combustion processes: a review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 402-428, June.
    13. Xu, Jun & Su, Sheng & Sun, Zhijun & Qing, Mengxia & Xiong, Zhe & Wang, Yi & Jiang, Long & Hu, Song & Xiang, Jun, 2016. "Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy-steam combustion process," Applied Energy, Elsevier, vol. 182(C), pages 20-28.
    14. Mao, Zhihui & Zhang, Liqi & Zhu, Xinyang & Pan, Cong & Yi, Baojun & Zheng, Chuguang, 2016. "Modeling of an oxy-coal flame under a steam-rich atmosphere," Applied Energy, Elsevier, vol. 161(C), pages 112-123.
    15. Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
    16. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres," Energy, Elsevier, vol. 48(1), pages 510-518.
    17. Wang, B. & Sun, L.S. & Su, S. & Xiang, J. & Hu, S. & Fei, H., 2012. "A kinetic study of NO formation during oxy-fuel combustion of pyridine," Applied Energy, Elsevier, vol. 92(C), pages 361-368.
    18. Mostafa, Mohamed E. & He, Limo & Xu, Jun & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "Investigating the effect of integrated CO2 and H2O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM)," Energy, Elsevier, vol. 179(C), pages 343-357.
    19. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    20. Gupta, Sapna & Adams, Joseph J. & Wilson, Jamie R. & Eddings, Eric G. & Mahapatra, Manoj K. & Singh, Prabhakar, 2016. "Performance and post-test characterization of an OTM system in an experimental coal gasifier," Applied Energy, Elsevier, vol. 165(C), pages 72-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:132:y:2014:i:c:p:349-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.