IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v5y2015i3p241-253.html
   My bibliography  Save this article

Jumpstarting commercial‐scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

Author

Listed:
  • Richard S. Middleton
  • Jonathan S. Levine
  • Jeffrey M. Bielicki
  • Hari S. Viswanathan
  • J. William Carey
  • Philip H. Stauffer

Abstract

CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high‐profile demonstration projects. We suggest that developing a large‐scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial‐scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal‐fired power plants. Here, we propose that near‐term investment could focus on implementing CO2 capture on facilities that produce high‐value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production on the price of their product, due to the addition of CO2 capture, more than coal‐fired power plants. A financially viable demonstration of a large‐scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market‐viable products. We demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the US Gulf Coast region. © 2015 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • Richard S. Middleton & Jonathan S. Levine & Jeffrey M. Bielicki & Hari S. Viswanathan & J. William Carey & Philip H. Stauffer, 2015. "Jumpstarting commercial‐scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 241-253, June.
  • Handle: RePEc:wly:greenh:v:5:y:2015:i:3:p:241-253
    DOI: 10.1002/ghg.1490
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1490
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shackley, Simon & Verma, Preeti, 2008. "Tackling CO2 reduction in India through use of CO2 capture and storage (CCS): Prospects and challenges," Energy Policy, Elsevier, vol. 36(9), pages 3554-3561, September.
    2. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    3. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    4. Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
    5. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    6. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karjunen, Hannu & Tynjälä, Tero & Hyppänen, Timo, 2017. "A method for assessing infrastructure for CO2 utilization: A case study of Finland," Applied Energy, Elsevier, vol. 205(C), pages 33-43.
    2. Brendan Hoover & Richard S. Middleton & Sean Yaw, 2019. "CostMAP: An open-source software package for developing cost surfaces," Papers 1906.08872, arXiv.org.
    3. Waxman, Andrew R. & Corcoran, Sean & Robison, Andrew & Leibowicz, Benjamin D. & Olmstead, Sheila, 2021. "Leveraging scale economies and policy incentives: Carbon capture, utilization & storage in Gulf clusters," Energy Policy, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
    2. Knoope, M.M.J. & Ramírez, A. & Faaij, A.P.C., 2015. "The influence of uncertainty in the development of a CO2 infrastructure network," Applied Energy, Elsevier, vol. 158(C), pages 332-347.
    3. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    4. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    5. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    6. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    7. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    8. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    9. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    10. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    11. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    12. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    13. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    14. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    15. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    16. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    17. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    18. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    19. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    20. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:5:y:2015:i:3:p:241-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.