IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v33y2022i2ne2708.html
   My bibliography  Save this article

Modeling cycles and interdependence in irregularly sampled geophysical time series

Author

Listed:
  • Granville Tunnicliffe Wilson
  • John Haywood
  • Lynda Petherick

Abstract

We show how an autoregressive Gaussian process model incorporating a time scale coefficient can be used to represent irregularly sampled geophysical time series. Selection of this coefficient, together with the order of autoregression, provides flexibility of the model appropriate to the structure of the data. This leads to a valuable improvement in the identification of the periodicities within and dependence between such series, which arise frequently and are often acquired at some cost in time and effort. We carefully explain the modeling procedure and demonstrate its efficacy for identifying periodic behavior in the context of an application to dust flux measurements from lake sediments in a region of subtropical eastern Australia. The model is further applied to the measurements of atmospheric carbon dioxide concentrations and temperature obtained from Antarctic ice cores. The model identifies periods in the glacial‐interglacial cycles of these series that are associated with astronomical forcing, determines that they are causally related, and, by application to current measurements, confirms the prediction of climate warming.

Suggested Citation

  • Granville Tunnicliffe Wilson & John Haywood & Lynda Petherick, 2022. "Modeling cycles and interdependence in irregularly sampled geophysical time series," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
  • Handle: RePEc:wly:envmet:v:33:y:2022:i:2:n:e2708
    DOI: 10.1002/env.2708
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2708
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeremy D. Shakun & Peter U. Clark & Feng He & Shaun A. Marcott & Alan C. Mix & Zhengyu Liu & Bette Otto-Bliesner & Andreas Schmittner & Edouard Bard, 2012. "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation," Nature, Nature, vol. 484(7392), pages 49-54, April.
    2. Dieter Lüthi & Martine Le Floch & Bernhard Bereiter & Thomas Blunier & Jean-Marc Barnola & Urs Siegenthaler & Dominique Raynaud & Jean Jouzel & Hubertus Fischer & Kenji Kawamura & Thomas F. Stocker, 2008. "High-resolution carbon dioxide concentration record 650,000–800,000 years before present," Nature, Nature, vol. 453(7193), pages 379-382, May.
    3. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    4. James W. Kirchner & Anne Weil, 2000. "Delayed biological recovery from extinctions throughout the fossil record," Nature, Nature, vol. 404(6774), pages 177-180, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loperfido, Nicola, 2010. "A note on marginal and conditional independence," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1695-1699, December.
    2. Buiter, Willem H., 1986. "Granger Causality and Policy Ineffectiveness: A Rejoinder," CEPR Discussion Papers 126, C.E.P.R. Discussion Papers.
    3. Ghosh, sudeshna, 2017. "Education Attainment Forecasting and Economic Inequality United States," MPRA Paper 89712, University Library of Munich, Germany.
    4. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    5. Blazsek, Szabolcs & Escribano, Alvaro, 2023. "Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts," Energy Economics, Elsevier, vol. 118(C).
    6. Fali Huang & Myoung-Jae Lee, 2010. "Dynamic treatment effect analysis of TV effects on child cognitive development," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(3), pages 392-419.
    7. Hau, Liya & Zhu, Huiming & Shahbaz, Muhammad & Sun, Wuqin, 2021. "Does transaction activity predict Bitcoin returns? Evidence from quantile-on-quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    8. Bentour, El Mostafa, 2013. "Oil Prices, Drought Periods and Growth Forecasts in Morocco," MPRA Paper 52892, University Library of Munich, Germany.
    9. Rafal Kasperowicz, 2010. "Identification Of Industrial Cycle Leading Indicators Using Causality Test," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 5(2), pages 47-59, December.
    10. Tuo Shi & Yuanman Hu & Miao Liu & Chunlin Li & Chuyi Zhang & Chong Liu, 2020. "How Do Economic Growth, Urbanization, and Industrialization Affect Fine Particulate Matter Concentrations? An Assessment in Liaoning Province, China," IJERPH, MDPI, vol. 17(15), pages 1-14, July.
    11. Yang, Yung Y. & Yi, Myung Hoon, 2008. "Does financial development cause economic growth? Implication for policy in Korea," Journal of Policy Modeling, Elsevier, vol. 30(5), pages 827-840.
    12. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    13. Jose Perez-Montiel & Carles Manera Erbina, 2019. "Investment Sustained by Consumption: A Linear and Nonlinear Time Series Analysis," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    14. Chen, Pu & Hsiao, Chih-Ying, 2010. "Looking behind Granger causality," MPRA Paper 24859, University Library of Munich, Germany.
    15. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    16. Ahmed, Walid M.A., 2018. "On the interdependence of natural gas and stock markets under structural breaks," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 149-161.
    17. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    18. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    19. Tomaso Aste, 2019. "Cryptocurrency market structure: connecting emotions and economics," Digital Finance, Springer, vol. 1(1), pages 5-21, November.
    20. Guohui Ding & Jiuhong Kang & Qi Liu & Tieliu Shi & Gang Pei & Yixue Li, 2006. "Insights into the Coupling of Duplication Events and Macroevolution from an Age Profile of Animal Transmembrane Gene Families," PLOS Computational Biology, Public Library of Science, vol. 2(8), pages 1-7, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:33:y:2022:i:2:n:e2708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.