IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v6y2018i1p19-46n2.html
   My bibliography  Save this article

Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas

Author

Listed:
  • Jin Xisong

    (Banque centrale du Luxembourg, 2, boulevard Royal L-2983 Luxembourg, Luxembourg)

  • Lehnert Thorsten

    (Luxembourg School of Finance, University of Luxembourg, Luxembourg, Luxembourg)

Abstract

Previous research has focused on the importance of modeling the multivariate distribution for optimal portfolio allocation and active risk management. However, existing dynamic models are not easily applied to high-dimensional problems due to the curse of dimensionality. In this paper, we extend the framework of the Dynamic Conditional Correlation/Equicorrelation and an extreme value approach into a series of Dynamic Conditional Elliptical Copulas. We investigate risk measures such as Value at Risk (VaR) and Expected Shortfall (ES) for passive portfolios and dynamic optimal portfolios using Mean-Variance and ES criteria for a sample of US stocks over a period of 10 years. Our results suggest that (1) Modeling the marginal distribution is important for dynamic high-dimensional multivariate models. (2) Neglecting the dynamic dependence in the copula causes over-aggressive risk management. (3) The DCC/DECO Gaussian copula and t-copula work very well for both VaR and ES. (4) Grouped t-copulas and t-copulas with dynamic degrees of freedom further match the fat tail. (5) Correctly modeling the dependence structure makes an improvement in portfolio optimization with respect to tail risk. (6) Models driven by multivariate t innovations with exogenously given degrees of freedom provide a flexible and applicable alternative for optimal portfolio risk management.

Suggested Citation

  • Jin Xisong & Lehnert Thorsten, 2018. "Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 19-46, February.
  • Handle: RePEc:vrs:demode:v:6:y:2018:i:1:p:19-46:n:2
    DOI: 10.1515/demo-2018-0002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2018-0002
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2018-0002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:oup:rfinst:v:25:y::i:12:p:3711-3751 is not listed on IDEAS
    2. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    3. Peter Christoffersen & Vihang Errunza & Kris Jacobs & Hugues Langlois, 2012. "Is the Potential for International Diversification Disappearing? A Dynamic Copula Approach," Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3711-3751.
    4. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    5. Lee, Tae-Hwy & Long, Xiangdong, 2009. "Copula-based multivariate GARCH model with uncorrelated dependent errors," Journal of Econometrics, Elsevier, vol. 150(2), pages 207-218, June.
    6. Fantazzini, Dean, 2009. "The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2168-2188, April.
    7. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    8. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
    9. Elton, Edwin J. & Gruber, Martin J. & Green, T. Clifton, 2007. "The Impact of Mutual Fund Family Membership on Investor Risk," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(2), pages 257-277, June.
    10. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    11. Acar, Elif F. & Genest, Christian & Nešlehová, Johanna, 2012. "Beyond simplified pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 74-90.
    12. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 125-154.
    13. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    14. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    15. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    16. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    17. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    18. Castle, Jennifer & Shephard, Neil (ed.), 2009. "The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry," OUP Catalogue, Oxford University Press, number 9780199237197, Decembrie.
    19. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    20. Oh, Dong Hwan & Patton, Andrew J., 2016. "High-dimensional copula-based distributions with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
    21. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    22. Fabio Busetti & Andrew Harvey, 2011. "When is a Copula Constant? A Test for Changing Relationships," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(1), pages 106-131, Winter.
    23. Bollerslev, Tim & Russell, Jeffrey & Watson, Mark (ed.), 2010. "Volatility and Time Series Econometrics: Essays in Honor of Robert Engle," OUP Catalogue, Oxford University Press, number 9780199549498, Decembrie.
    24. Billio, Monica & Caporin, Massimiliano, 2009. "A generalized Dynamic Conditional Correlation model for portfolio risk evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2566-2578.
    25. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    26. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    27. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    28. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
    29. Vargas, Gregorio A., 2006. "An Asymmetric Block Dynamic Conditional Correlation Multivariate GARCH Model," MPRA Paper 189, University Library of Munich, Germany, revised Aug 2006.
    30. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    31. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    32. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaete, Michael & Herrera, Rodrigo, 2023. "Diversification benefits of commodities in portfolio allocation: A dynamic factor copula approach," Journal of Commodity Markets, Elsevier, vol. 32(C).
    2. M. Andrea Arias-Serna & Jean-Michel Loubes & Francisco J. Caro-Lopera, 2020. "Risk Measures Estimation Under Wasserstein Barycenter," Papers 2008.05824, arXiv.org.
    3. Duy Duong & Toan Luu Duc Huynh, 2020. "Tail dependence in emerging ASEAN-6 equity markets: empirical evidence from quantitative approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    2. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    4. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    5. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    6. Jin, Xisong & Nadal De Simone, Francisco de A., 2014. "Banking systemic vulnerabilities: A tail-risk dynamic CIMDO approach," Journal of Financial Stability, Elsevier, vol. 14(C), pages 81-101.
    7. Peter Christoffersen & Kris Jacobs & Xisong Jin & Hugues Langlois, 2013. "Dynamic Diversification in Corporate Credit," CREATES Research Papers 2013-46, Department of Economics and Business Economics, Aarhus University.
    8. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    9. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    10. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    11. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    12. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
    13. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    14. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    15. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-78, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    17. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
    18. Chollete, Loran & Ning, Cathy, 2010. "Asymmetric Dependence in US Financial Risk Factors?," UiS Working Papers in Economics and Finance 2011/2, University of Stavanger.
    19. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    20. Mario Cerrato & John Crosby & Minjoo Kim & Yang Zhao, 2015. "Modeling Dependence Structure and Forecasting Market Risk with Dynamic Asymmetric Copula," Working Papers 2015_15, Business School - Economics, University of Glasgow.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:6:y:2018:i:1:p:19-46:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.