Advanced Search
MyIDEAS: Login to save this article or follow this journal

The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study

Contents:

Author Info

  • Fantazzini, Dean

Abstract

The effect on the estimation of the Value at Risk when dealing with multivariate portfolios when there is a misspecification both in the marginals and in the copulas is investigated. It is first shown that, when there is skewness in the data and symmetric marginals are used, the estimated elliptical (normal or t) copula correlations are negatively biased, reaching values as high as 70% of the true values. Besides, the bias almost doubles if negative correlations are considered, compared to positive correlations. As for the t copula degrees of freedom parameter, the use of wrong marginals delivers large positive biases, instead. If the dependence structure is represented by a copula which is not elliptical, e.g.the Clayton copula, the effects of marginal misspecifications on the copula parameter estimation can be rather different, depending on the sign of marginal skewness. Extensive Monte Carlo studies then show that the misspecifications in the marginal volatility equation more than offset the biases in copula parameters when VaR forecasting is of concern, small samples are considered and the data are leptokurtic. The biases in the volatility parameters are much smaller, whereas those ones in the copula parameters remain almost unchanged or even increase when the sample dimension increases. In this case, copula misspecifications do play a role for VaR estimation. However, these effects depend heavily on the sign of the dependence.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V8V-4RSRD9X-1/2/ef158016210c43f517975adeef132a1e
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 53 (2009)
Issue (Month): 6 (April)
Pages: 2168-2188

as in new window
Handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2168-2188

Contact details of provider:
Web page: http://www.elsevier.com/locate/csda

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  2. Peter F. Christoffersen & Francis X. Diebold, 1997. "How Relevant is Volatility Forecasting for Financial Risk Management?," Center for Financial Institutions Working Papers 97-45, Wharton School Center for Financial Institutions, University of Pennsylvania.
  3. Soosung Hwang & Pedro L. Valls Pereira, 2006. "Small sample properties of GARCH estimates and persistence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 473-494.
  4. GIOT, Pierre & LAURENT, Sébastien, . "Value-at-Risk for long and short trading positions," CORE Discussion Papers RP -1707, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
  6. Markus Junker & Angelika May, 2005. "Measurement of aggregate risk with copulas," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 428-454, December.
  7. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  8. Andrew Patton, 2004. "Modelling Asymmetric Exchange Rate Dependence," Working Papers wp04-04, Warwick Business School, Finance Group.
  9. Giacomini, Raffaella & Komunjer, Ivana, 2002. "Evaluation and Combination of Conditional Quantile Forecasts," University of California at San Diego, Economics Working Paper Series qt4n99t4wz, Department of Economics, UC San Diego.
  10. Nikoloulopoulos, Aristidis K. & Karlis, Dimitris, 2008. "Copula model evaluation based on parametric bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3342-3353, March.
  11. Kim, Gunky & Silvapulle, Mervyn J. & Silvapulle, Paramsothy, 2007. "Comparison of semiparametric and parametric methods for estimating copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2836-2850, March.
  12. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
  13. Pierre Giot and S»bastien Laurent, 2001. "Value-At-Risk For Long And Short Trading Positions," Computing in Economics and Finance 2001 94, Society for Computational Economics.
  14. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
  15. Thierry Ane & Cecile Kharoubi, 2003. "Dependence Structure and Risk Measure," The Journal of Business, University of Chicago Press, vol. 76(3), pages 411-438, July.
  16. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
  2. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
  3. Fantazzini, Dean, 2008. "An Econometric Analysis of Financial Data in Risk Management," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 10(2), pages 91-137.
  4. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "Long Memory and Tail dependence in Trading Volume and Volatility," CREATES Research Papers 2009-30, School of Economics and Management, University of Aarhus.
  5. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
  6. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 22(2), pages 98-134.
  7. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 17(1), pages 62-87.
  8. Fantazzini, Dean, 2008. "Econometric Analysis of Financial Data in Risk Management (continuation). Section III: Managing Operational Risk," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 11(3), pages 87-122.
  9. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
  10. Matthias Fengler & Helmut Herwartz & Christian Werner, 2010. "A dynamic copula approach to recovering the index implied volatility skew," University of St. Gallen Department of Economics working paper series 2010 1132, Department of Economics, University of St. Gallen, revised Nov 2011.
  11. Ausin, M. Concepcion & Lopes, Hedibert F., 2010. "Time-varying joint distribution through copulas," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2383-2399, November.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2168-2188. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.