Advanced Search
MyIDEAS: Login to save this article or follow this journal

Johnson binomial trees

Contents:

Author Info

  • Jean-Guy Simonato
Registered author(s):

    Abstract

    Rubinstein developed a binomial lattice technique for pricing European and American derivatives in the context of skewed and leptokurtic asset return distributions. A drawback of this approach is the limited set of skewness and kurtosis pairs for which valid stock return distributions are possible. A solution to this problem is proposed here by extending Rubinstein's Edgeworth tree idea to the case of the Johnson system of distributions which is capable of accommodating all possible skewness and kurtosis pairs. Numerical examples showing the performance of the Johnson tree to approximate the prices of European and American options in Merton's jump diffusion framework and Duan's GARCH framework are examined.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680902950821
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Quantitative Finance.

    Volume (Year): 11 (2011)
    Issue (Month): 8 ()
    Pages: 1165-1176

    as in new window
    Handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1165-1176

    Contact details of provider:
    Web page: http://www.tandfonline.com/RQUF20

    Order Information:
    Web: http://www.tandfonline.com/pricing/journal/RQUF20

    Related research

    Keywords: Edgeworth binomial tree; Skewness; Kurtosis; Johnson distribution; American option; Jump diffusion; GARCH;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1250058-1-1.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:8:p:1165-1176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.