Advanced Search
MyIDEAS: Login to save this article or follow this journal

Volatility forecasting for crude oil futures

Contents:

Author Info

  • Massimiliano Marzo
  • Paolo Zagaglia

Abstract

This article studies the forecasting properties of linear GARCH models for closing-day futures prices on crude oil, first position, traded in the New York Mercantile Exchange from January 1995 to November 2005. To account for fat tails in the empirical distribution of the series, we compare models based on the normal, Student's t and generalized exponential distribution. We focus on out-of-sample predictability by ranking the models according to a large array of statistical loss functions. The results from the tests for predictive ability show that the GARCH-G model fares best for short horizons from 1 to 3 days ahead. For horizons from 1 week ahead, no superior model can be identified. We also consider out-of-sample loss functions based on value-at-risk that mimic portfolio managers and regulators' preferences. Exponential GARCH models display the best performance in this case. The swings in oil prices that gave investors and traders whiplash in 2004 are not preventing new investors from rushing into oil and other energy-related commodities this year. (…) Ultimately, the rising number of speculator could lead to even more price volatility in 2005, pushing the highs higher and the lows lower. (…) After a generation in the wilderness, the oil futures that are used to make a bet on oil prices have become a bona fide investment, said Charles O'Donnell, who manages Lake Asset Management, a small energy fund based in London. Heather Timmons, The New York Times1

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.informaworld.com/openurl?genre=article&doi=10.1080/13504850903084996&magic=repec&7C&7C8674ECAB8BB840C6AD35DC6213A474B5
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Applied Economics Letters.

Volume (Year): 17 (2010)
Issue (Month): 16 ()
Pages: 1587-1599

as in new window
Handle: RePEc:taf:apeclt:v:17:y:2010:i:16:p:1587-1599

Contact details of provider:
Web page: http://www.tandfonline.com/RAEL20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/RAEL20

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
  2. Ewing, Bradley T. & Malik, Farooq & Ozfidan, Ozkan, 2002. "Volatility transmission in the oil and natural gas markets," Energy Economics, Elsevier, vol. 24(6), pages 525-538, November.
  3. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
  4. Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  5. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  6. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  7. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  8. Pesaran, M.H. & Timmermann, A., 1990. "A Simple, Non-Parametric Test Of Predictive Performance," Cambridge Working Papers in Economics 9021, Faculty of Economics, University of Cambridge.
  9. Fleming, Jeff & Ostdiek, Barbara, 1999. "The impact of energy derivatives on the crude oil market," Energy Economics, Elsevier, vol. 21(2), pages 135-167, April.
  10. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
  11. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
  12. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  13. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  14. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Amélie Charles & Olivier Darné, 2014. "Volatility persistence in crude oil markets," Post-Print hal-00940312, HAL.
  2. Jakobsson, Kristofer & Söderbergh, Bengt & Snowden, Simon & Li, Chuan-Zhong & Aleklett, Kjell, 2012. "Oil exploration and perceptions of scarcity: The fallacy of early success," Energy Economics, Elsevier, vol. 34(4), pages 1226-1233.
  3. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
  4. Xu, Bing & Ouenniche, Jamal, 2012. "A data envelopment analysis-based framework for the relative performance evaluation of competing crude oil prices' volatility forecasting models," Energy Economics, Elsevier, vol. 34(2), pages 576-583.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:17:y:2010:i:16:p:1587-1599. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.