IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i5d10.1007_s11269-022-03094-4.html
   My bibliography  Save this article

Impact of water conservation structures on the agricultural productivity in the context of climate change

Author

Listed:
  • Vamsi Krishna Vema

    (National Institute of Technology Warangal)

  • K. P. Sudheer

    (Purdue University
    Indian Institute of Technology Madras)

  • A. N. Rohith

    (Indian Institute of Technology Madras)

  • I. Chaubey

    (University of Connecticut)

Abstract

The temporal variability of rainfall in rainfed regions is one of the main factors for their low agricultural productivity. The future climate projections show an increased variability of rainfall, thus further impacting the rainfed agriculture. The change in rainfall pattern is expected to alter the cropping period and making the crop sowing date critical to mitigate crop failure. However, with enhanced temporal variability of rainfall, arriving at an optimal crop sowing date is a challenging task. One of the widely adopted measure to improve the agricultural productivity in the rainfed regions is water harvesting structures (WHS). This study evaluates the ability of the WHS in absorbing the shock of the temporal variability of the rainfall on the agricultural productivity. In addition, the efficacy of the structures in improving the agricultural productivity in the future climate projections is also evaluated. The proposed analysis is performed over Kondepi watershed in Andhra Pradesh, India, where water conservation measures are implemented by Government and Non-Government Organizations. The results of the study show that the WHS can minimize the sensitivity of the agricultural productivity to the crop sowing date. The extended availability of water in WHS resulted in removing the relationship between crop sowing date and crop productivity, thus exhibiting the ability of WHS in dams in absorbing the shock caused by the temporal variability of the rainfall. Further, the agricultural productivity was found to be increasing due to the presence of WHS in both current and future climate conditions.

Suggested Citation

  • Vamsi Krishna Vema & K. P. Sudheer & A. N. Rohith & I. Chaubey, 2022. "Impact of water conservation structures on the agricultural productivity in the context of climate change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1627-1644, March.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:5:d:10.1007_s11269-022-03094-4
    DOI: 10.1007/s11269-022-03094-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03094-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03094-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valverde, Pedro & de Carvalho, Mário & Serralheiro, Ricardo & Maia, Rodrigo & Ramos, Vanessa & Oliveira, Bruno, 2015. "Climate change impacts on rainfed agriculture in the Guadiana river basin (Portugal)," Agricultural Water Management, Elsevier, vol. 150(C), pages 35-45.
    2. Ping Li & Rebecca L. Muenich & Indrajeet Chaubey & Xiaomei Wei, 2019. "Evaluating Agricultural BMP Effectiveness in Improving Freshwater Provisioning Under Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 453-473, January.
    3. Valverde, Pedro & Serralheiro, Ricardo & de Carvalho, Mário & Maia, Rodrigo & Oliveira, Bruno & Ramos, Vanessa, 2015. "Climate change impacts on irrigated agriculture in the Guadiana river basin (Portugal)," Agricultural Water Management, Elsevier, vol. 152(C), pages 17-30.
    4. Araya, A. & Habtu, Solomon & Hadgu, Kiros Meles & Kebede, Afewerk & Dejene, Taddese, 2010. "Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare)," Agricultural Water Management, Elsevier, vol. 97(11), pages 1838-1846, November.
    5. Mohammed, Adem & Tana, Tamado & Singh, Piara & Molla, Adamu & Seid, Ali, 2017. "Identifying best crop management practices for chickpea (Cicer arietinum L.) in Northeastern Ethiopia under climate change condition," Agricultural Water Management, Elsevier, vol. 194(C), pages 68-77.
    6. Kimball, B. A. & Idso, S. B., 1983. "Increasing atmospheric CO2: effects on crop yield, water use and climate," Agricultural Water Management, Elsevier, vol. 7(1-3), pages 55-72, September.
    7. Karlberg, L. & Garg, K.K. & Barron, J. & Wani, S.P., 2015. "Impacts of agricultural water interventions on farm income: An example from the Kothapally watershed, India," Agricultural Systems, Elsevier, vol. 136(C), pages 30-38.
    8. Gajanan Ramteke & R. Singh & C. Chatterjee, 2020. "Assessing Impacts of Conservation Measures on Watershed Hydrology Using MIKE SHE Model in the Face of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4233-4252, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jullian S. Sone & Thamiris F. Araujo & Gabriela C. Gesualdo & André S. Ballarin & Glauber A. Carvalho & Paulo Tarso S. Oliveira & Edson Cezar Wendland, 2022. "Water Security in an Uncertain Future: Contrasting Realities from an Availability-Demand Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2571-2587, June.
    2. Soumyashree Dixit & V. Neethin & K. V. Jayakumar, 2023. "Assessment of Crop-Drought Relationship: A Climate Change Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4075-4095, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catarina Esgalhado & Maria Helena Guimaraes, 2020. "Unveiling Contrasting Preferred Trajectories of Local Development in Southeast Portugal," Land, MDPI, vol. 9(3), pages 1-15, March.
    2. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    3. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    4. Carina Almeida & Tiago B. Ramos & João Sobrinho & Ramiro Neves & Rodrigo Proença de Oliveira, 2019. "An Integrated Modelling Approach to Study Future Water Demand Vulnerability in the Montargil Reservoir Basin, Portugal," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
    5. Kassahun, Habtamu Tilahun & Nicholson, Charles F. & Jacobsen, Jette Bredahl & Steenhuis, Tammo S., 2016. "Accounting for user expectations in the valuation of reliable irrigation water access in the Ethiopian highlands," Agricultural Water Management, Elsevier, vol. 168(C), pages 45-55.
    6. El Chami, D. & Daccache, A., 2015. "Assessing sustainability of winter wheat production under climate change scenarios in a humid climate — An integrated modelling framework," Agricultural Systems, Elsevier, vol. 140(C), pages 19-25.
    7. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    8. Costa, J.M. & Vaz, M. & Escalona, J. & Egipto, R. & Lopes, C. & Medrano, H. & Chaves, M.M., 2016. "Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity," Agricultural Water Management, Elsevier, vol. 164(P1), pages 5-18.
    9. García-López, J. & Lorite, I.J. & García-Ruiz, R. & Ordoñez, R. & Dominguez, J., 2016. "Yield response of sunflower to irrigation and fertilization under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 176(C), pages 151-162.
    10. Oduor, Brian Omondi & Campo-Bescós, Miguel Ángel & Lana-Renault, Noemí & Casalí, Javier, 2023. "Effects of climate change on streamflow and nitrate pollution in an agricultural Mediterranean watershed in Northern Spain," Agricultural Water Management, Elsevier, vol. 285(C).
    11. Ali Firoozzare & Sayed Saghaian & Sasan Esfandiari Bahraseman & Maryam Dehghani Dashtabi, 2023. "Identifying the Best Strategies for Improving and Developing Sustainable Rain-Fed Agriculture: An Integrated SWOT-BWM-WASPAS Approach," Agriculture, MDPI, vol. 13(6), pages 1-16, June.
    12. García-López, J. & García-Ruiz, R. & Domínguez, J. & Lorite, I.J., 2019. "Improving the sustainability of farming systems under semi-arid conditions by enhancing crop management," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    13. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    14. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    15. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    16. Cabezas, J.M. & Ruiz-Ramos, M. & Soriano, M.A. & Santos, C. & Gabaldón-Leal, C. & Lorite, I.J., 2021. "Impact of climate change on economic components of Mediterranean olive orchards," Agricultural Water Management, Elsevier, vol. 248(C).
    17. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    18. Rabar Fatah Salih & Ekhlass Mamand Hamad & Tara Namiq Ismail, 2022. "Commercial And Field Factors Of Selecting Kenaf Fibers As Alternative Materials In Industrial Applications," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 6(2), pages 92-96, March.
    19. Lo, Yueh-Hsin & Blanco, Juan A. & Canals, Rosa M. & González de Andrés, Ester & San Emeterio, Leticia & Imbert, J. Bosco & Castillo, Federico J., 2015. "Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: A modeling approach," Ecological Modelling, Elsevier, vol. 312(C), pages 322-334.
    20. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:5:d:10.1007_s11269-022-03094-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.