IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v312y2015icp322-334.html
   My bibliography  Save this article

Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: A modeling approach

Author

Listed:
  • Lo, Yueh-Hsin
  • Blanco, Juan A.
  • Canals, Rosa M.
  • González de Andrés, Ester
  • San Emeterio, Leticia
  • Imbert, J. Bosco
  • Castillo, Federico J.

Abstract

In the southern Pyrenees, human population and therefore land uses have changed from forests to pastures, then crops, and back to pastures and secondary forests during the last two centuries. To understand what such rapid land use changes have meant for carbon (C) and nitrogen (N) stocks, we used data from two forest sites in the western Pyrenees, combined with regional data on pastures and crop production (potato, cereal), to calibrate the ecosystem-level model FORECAST. Then, we simulated 150 years of land use for each site, emulating historical changes. Our estimates show that the conversion from forests into pastures and crops created C and N deficits (378–427MgCha−1, 4.0–4.6MgNha−1) from which these sites are still recovering. The main ecological process behind the creation of these deficits was the loss of the ecological legacy of soil organic matter (SOM) created by the forest, particularly during conversion to farming. Pastures were able to reverse, stop or at least slow down the loss of such legacy. In conclusion, our work shows the deep impact of historical land use in ecosystem attributes, both in magnitude of removed C and N stocks and in duration of such impact. Also, the usefulness of ecological modeling in absence of historical data to estimate such changes is showcased, providing a framework for potential C and N stocks to be reached by climate change mitigation measures such as forest restoration.

Suggested Citation

  • Lo, Yueh-Hsin & Blanco, Juan A. & Canals, Rosa M. & González de Andrés, Ester & San Emeterio, Leticia & Imbert, J. Bosco & Castillo, Federico J., 2015. "Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: A modeling approach," Ecological Modelling, Elsevier, vol. 312(C), pages 322-334.
  • Handle: RePEc:eee:ecomod:v:312:y:2015:i:c:p:322-334
    DOI: 10.1016/j.ecolmodel.2015.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015002549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hashimoto, S. & Wattenbach, M. & Smith, P., 2011. "A new scheme for initializing process-based ecosystem models by scaling soil carbon pools," Ecological Modelling, Elsevier, vol. 222(19), pages 3598-3602.
    2. Moore, A. D. & Donnelly, J. R. & Freer, M., 1997. "GRAZPLAN: Decision support systems for Australian grazing enterprises. III. Pasture growth and soil moisture submodels, and the GrassGro DSS," Agricultural Systems, Elsevier, vol. 55(4), pages 535-582, December.
    3. Araya, A. & Habtu, Solomon & Hadgu, Kiros Meles & Kebede, Afewerk & Dejene, Taddese, 2010. "Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare)," Agricultural Water Management, Elsevier, vol. 97(11), pages 1838-1846, November.
    4. Shi, Mingjie & Yang, Zong-Liang & Lawrence, David M. & Dickinson, Robert E. & Subin, Zachary M., 2013. "Spin-up processes in the Community Land Model version 4 with explicit carbon and nitrogen components," Ecological Modelling, Elsevier, vol. 263(C), pages 308-325.
    5. Gloria Guzmán & Eduardo Aguilera & David Soto & Antonio Cid & Juan Infante & Roberto García Ruiz & Antonio Herrera & Inmaculada Villa & Manuel González de Molina, 2014. "Methodology and conversion factors to estimate the net primary productivity of historical and contemporary agroecosystems," Documentos de Trabajo de la Sociedad de Estudios de Historia Agraria 1407, Sociedad de Estudios de Historia Agraria.
    6. Philippe Ciais & Sébastien Gervois & N. Vuichard & S. L. Piao & N. Viovy, 2011. "Effects of land use change and management on the European cropland carbon balance," Post-Print hal-00716512, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongxun Zhang & Qingwen Min & Guigen Zhao & Wenjun Jiao & Weiwei Liu & Dhruba Bijaya G.C., 2016. "Can Clean Energy Policy Improve the Quality of Alpine Grassland Ecosystem? A Scenario Analysis to Influence the Energy Changes in the Three-River Headwater Region, China," Sustainability, MDPI, vol. 8(3), pages 1-14, March.
    2. Xiaomin Guo & Xiaowei Chuai & Xianjin Huang, 2019. "A Land Use/Land Cover Based Green Development Study for Different Functional Regions in the Jiangsu Province, China," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    3. Lo, Yueh-Hsin & Blanco, Juan A. & González de Andrés, Ester & Imbert, J. Bosco & Castillo, Federico J., 2019. "CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the southwestern Pyrenees," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thamo, Tas & Addai, Donkor & Kragt, Marit E. & Kingwell, Ross S. & Pannell, David J. & Robertson, Michael J., 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    2. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    3. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Brown, Peter D. & Cochrane, Thomas A. & Krom, Thomas D., 2010. "Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing," Agricultural Water Management, Elsevier, vol. 97(6), pages 892-900, June.
    5. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    6. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    7. Amir Tabarzad & Ali Asghar Ghaemi & Shahrokh Zand-parsa, 2016. "Barley Grain Yield and Protein Content Response to Deficit Irrigation and Sowing Dates in Semi-Arid Region," Modern Applied Science, Canadian Center of Science and Education, vol. 10(10), pages 193-193, October.
    8. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    9. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    10. Stricevic, Ruzica & Cosic, Marija & Djurovic, Nevenka & Pejic, Borivoj & Maksimovic, Livija, 2011. "Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower," Agricultural Water Management, Elsevier, vol. 98(10), pages 1615-1621, August.
    11. Haileselassie, Hailay & Araya, A. & Habtu, Solomon & Meles, Kiros Gebretsadkan & Gebru, Girmay & Kisekka, Isaya & Girma, Atkilt & Hadgu, Kiros Meles & Foster, A.J., 2016. "Exploring optimal farm resources management strategy for Quncho-teff (Eragrostis tef (Zucc.) Trotter) using AquaCrop model," Agricultural Water Management, Elsevier, vol. 178(C), pages 148-158.
    12. McPhee, Malcolm J. & Evered, Mark & Andrews, Todd & Pacheco, David & Dougherty, Holland C. & Ingham, Aaron B. & Harden, Steven & Crean, Jason & Roche, Leslie & Eastburn, Danny J. & Oltjen, James W. & , 2019. "Beef production simulation of nitrate and lipid supplements for pasture and rangeland fed enterprises," Agricultural Systems, Elsevier, vol. 170(C), pages 19-27.
    13. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. Padró, R. & Marco, I. & Font, C. & Tello, E., 2019. "Beyond Chayanov: A sustainable agroecological farm reproductive analysis of peasant domestic units and rural communities (Sentmenat; Catalonia, 1860)," Ecological Economics, Elsevier, vol. 160(C), pages 227-239.
    15. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
    16. Mkhabela, Manasah S. & Bullock, Paul R., 2012. "Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada," Agricultural Water Management, Elsevier, vol. 110(C), pages 16-24.
    17. Lijuan Miao & Feng Zhu & Zhanli Sun & John C. Moore & Xuefeng Cui, 2016. "China’s Land-Use Changes during the Past 300 Years: A Historical Perspective," IJERPH, MDPI, vol. 13(9), pages 1-16, August.
    18. Hatcher, Sue & Hinch, Geoff N. & Kilgour, Robert J. & Holst, Peter J. & Refshauge, P. Gordon & Shands, Chris G., 2011. "Lamb survival – balancing genetics, selection and management," AFBM Journal, Australasian Farm Business Management Network, vol. 7(2), pages 1-14, February.
    19. Tocker, Jonathon & Malcolm, B. & Heard, J. & Ho, C. & Behrendt, R., 2022. "Profitable Sheep Farming in South-west Victoria: Specialisation or Diversification Under Volatile Prices, Costs and Climate," AFBM Journal, Australasian Farm Business Management Network, vol. 19(1), April.
    20. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:312:y:2015:i:c:p:322-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.