IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v156y2017icp76-84.html
   My bibliography  Save this article

Mapping regional risks from climate change for rainfed rice cultivation in India

Author

Listed:
  • Singh, Kuntal
  • McClean, Colin J.
  • Büker, Patrick
  • Hartley, Sue E.
  • Hill, Jane K.

Abstract

Global warming is predicted to increase in the future, with detrimental consequences for rainfed crops that are dependent on natural rainfall (i.e. non-irrigated). Given that many crops grown under rainfed conditions support the livelihoods of low-income farmers, it is important to highlight the vulnerability of rainfed areas to climate change in order to anticipate potential risks to food security. In this paper, we focus on India, where ~50% of rice is grown under rainfed conditions, and we employ statistical models (climate envelope models (CEMs) and boosted regression trees (BRTs)) to map changes in climate suitability for rainfed rice cultivation at a regional level (~18×18km cell resolution) under projected future (2050) climate change (IPCC RCPs 2.6 and 8.5, using three GCMs: BCC-CSM1.1, MIROC-ESM-CHEM, and HadGEM2-ES). We quantify the occurrence of rice (whether or not rainfed rice is commonly grown, using CEMs) and rice extent (area under cultivation, using BRTs) during the summer monsoon in relation to four climate variables that affect rice growth and yield namely ratio of precipitation to evapotranspiration (PER), maximum and minimum temperatures (Tmax and Tmin), and total rainfall during harvesting. Our models described the occurrence and extent of rice very well (CEMs for occurrence, ensemble AUC=0.92; BRTs for extent, Pearson's r=0.87). PER was the most important predictor of rainfed rice occurrence, and it was positively related to rainfed rice area, but all four climate variables were important for determining the extent of rice cultivation. Our models project that 15%–40% of current rainfed rice growing areas will be at risk (i.e. decline in climate suitability or become completely unsuitable). However, our models project considerable variation across India in the impact of future climate change: eastern and northern India are the locations most at risk, but parts of central and western India may benefit from increased precipitation. Hence our CEM and BRT models agree on the locations most at risk, but there is less consensus about the degree of risk at these locations. Our results help to identify locations where livelihoods of low-income farmers and regional food security may be threatened in the next few decades by climate changes. The use of more drought-resilient rice varieties and better irrigation infrastructure in these regions may help to reduce these impacts and reduce the vulnerability of farmers dependent on rainfed cropping.

Suggested Citation

  • Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
  • Handle: RePEc:eee:agisys:v:156:y:2017:i:c:p:76-84
    DOI: 10.1016/j.agsy.2017.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16302311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naresh Soora & P. Aggarwal & Rani Saxena & Swaroopa Rani & Surabhi Jain & Nitin Chauhan, 2013. "An assessment of regional vulnerability of rice to climate change in India," Climatic Change, Springer, vol. 118(3), pages 683-699, June.
    2. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    3. Gordon Conway & Gary Toenniessen, 1999. "Feeding the world in the twenty-first century," Nature, Nature, vol. 402(6761), pages 55-58, December.
    4. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    5. Avery S. Cohn & Leah K. VanWey & Stephanie A. Spera & John F. Mustard, 2016. "Cropping frequency and area response to climate variability can exceed yield response," Nature Climate Change, Nature, vol. 6(6), pages 601-604, June.
    6. Joshi, P.K., 2015. "Has Indian Agriculture Become Crowded and Risky? Status, Implications and the Way Forward," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 70(1).
    7. James Watson & Andrew Challinor & Thomas Fricker & Christopher Ferro, 2015. "Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model," Climatic Change, Springer, vol. 132(1), pages 93-109, September.
    8. Aggarwal, P. K. & Hebbar, K. B. & Venugopalan, M. V. & Rani, S. & Bala, A. & Biswal, A. & Wani, S. P., 2008. "Quantification of yield gaps in rain-fed rice, wheat, cotton and mustard in India," IWMI Research Reports H041564, International Water Management Institute.
    9. Valverde, Pedro & de Carvalho, Mário & Serralheiro, Ricardo & Maia, Rodrigo & Ramos, Vanessa & Oliveira, Bruno, 2015. "Climate change impacts on rainfed agriculture in the Guadiana river basin (Portugal)," Agricultural Water Management, Elsevier, vol. 150(C), pages 35-45.
    10. Machovina, Brian & Feeley, Kenneth J., 2013. "Climate change driven shifts in the extent and location of areas suitable for export banana production," Ecological Economics, Elsevier, vol. 95(C), pages 83-95.
    11. Maximilian Auffhammer & V. Ramanathan & Jeffrey Vincent, 2012. "Climate change, the monsoon, and rice yield in India," Climatic Change, Springer, vol. 111(2), pages 411-424, March.
    12. Mavromatis, T., 2016. "Spatial resolution effects on crop yield forecasts: An application to rainfed wheat yield in north Greece with CERES-Wheat," Agricultural Systems, Elsevier, vol. 143(C), pages 38-48.
    13. Valverde, Pedro & Serralheiro, Ricardo & de Carvalho, Mário & Maia, Rodrigo & Oliveira, Bruno & Ramos, Vanessa, 2015. "Climate change impacts on irrigated agriculture in the Guadiana river basin (Portugal)," Agricultural Water Management, Elsevier, vol. 152(C), pages 17-30.
    14. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    15. Chun, Jong Ahn & Li, Sanai & Wang, Qingguo & Lee, Woo-Seop & Lee, Eun-Jeong & Horstmann, Nina & Park, Hojeong & Veasna, Touch & Vanndy, Lim & Pros, Khok & Vang, Seng, 2016. "Assessing rice productivity and adaptation strategies for Southeast Asia under climate change through multi-scale crop modeling," Agricultural Systems, Elsevier, vol. 143(C), pages 14-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mphande, Wiza & Kettlewell, Peter S. & Grove, Ivan G. & Farrell, Aidan D., 2020. "The potential of antitranspirants in drought management of arable crops: A review," Agricultural Water Management, Elsevier, vol. 236(C).
    2. Jayasree Krishnankutty & Michael Blakeney & Rajesh K. Raju & Kadambot H. M. Siddique, 2021. "Sustainability of Traditional Rice Cultivation in Kerala, India—A Socio-Economic Analysis," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    3. Gallé, Johannes & Katzenberger, Anja, 2023. "Indian agriculture under climate change: The competing effect of temperature and rainfall anomalies," Ruhr Economic Papers 1002, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    4. Nitya Chanana-Nag & Pramod K. Aggarwal, 2020. "Woman in agriculture, and climate risks: hotspots for development," Climatic Change, Springer, vol. 158(1), pages 13-27, January.
    5. Francisco Fontes & Ashley Gorst & Charles Palmer, 2021. "Threshold effects of extreme weather events on cereal yields in India," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
    6. Sandeep Kandikuppa & Clark Gray, 2022. "Climate change and household debt in rural India," Climatic Change, Springer, vol. 173(3), pages 1-27, August.
    7. Zhao, Jiongchao & Wang, Chong & Shi, Xiaoyu & Bo, Xiaozhi & Li, Shuo & Shang, Mengfei & Chen, Fu & Chu, Qingquan, 2021. "Modeling climatically suitable areas for soybean and their shifts across China," Agricultural Systems, Elsevier, vol. 192(C).
    8. Abdelfatah, Kareem & Senn, Jonathan & Glaeser, Noemi & Terejanu, Gabriel, 2019. "Prediction and measurement update of fungal toxin geospatial uncertainty using a Stacked Gaussian process," Agricultural Systems, Elsevier, vol. 176(C).
    9. Serey Sok & Nyda Chhinh & Sanara Hor & Pheakdey Nguonphan, 2021. "Climate Change Impacts on Rice Cultivation: A Comparative Study of the Tonle Sap and Mekong River," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    10. Akpoti, Komlavi & Dossou-Yovo, Elliott R. & Zwart, Sander J. & Kiepe, Paul, 2021. "The potential for expansion of irrigated rice under alternate wetting and drying in Burkina Faso," Agricultural Water Management, Elsevier, vol. 247(C).
    11. Xu, Qin & Fox, Glenn & McKenney, Dan & Parkin, Gary, 2019. "A theoretical economic model of the demand for irrigation water," Agricultural Water Management, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Catarina Esgalhado & Maria Helena Guimaraes, 2020. "Unveiling Contrasting Preferred Trajectories of Local Development in Southeast Portugal," Land, MDPI, vol. 9(3), pages 1-15, March.
    4. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    5. Hildegart Ahumada & Magdalena Cornejo, 2019. "How econometrics can help us understand the effects of climate change on crop yields: the case of soybeans," School of Government Working Papers wp_gob_2019_2, Universidad Torcuato Di Tella.
    6. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    7. R. K. Mall & Nidhi Singh & K. K. Singh & Geetika Sonkar & Akhilesh Gupta, 2018. "Evaluating the performance of RegCM4.0 climate model for climate change impact assessment on wheat and rice crop in diverse agro-climatic zones of Uttar Pradesh, India," Climatic Change, Springer, vol. 149(3), pages 503-515, August.
    8. Carina Almeida & Tiago B. Ramos & João Sobrinho & Ramiro Neves & Rodrigo Proença de Oliveira, 2019. "An Integrated Modelling Approach to Study Future Water Demand Vulnerability in the Montargil Reservoir Basin, Portugal," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
    9. Kassahun, Habtamu Tilahun & Nicholson, Charles F. & Jacobsen, Jette Bredahl & Steenhuis, Tammo S., 2016. "Accounting for user expectations in the valuation of reliable irrigation water access in the Ethiopian highlands," Agricultural Water Management, Elsevier, vol. 168(C), pages 45-55.
    10. Jeonghyun Kim & Hojeong Park & Jong Ahn Chun & Sanai Li, 2018. "Adaptation Strategies under Climate Change for Sustainable Agricultural Productivity in Cambodia," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    11. El Chami, D. & Daccache, A., 2015. "Assessing sustainability of winter wheat production under climate change scenarios in a humid climate — An integrated modelling framework," Agricultural Systems, Elsevier, vol. 140(C), pages 19-25.
    12. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    13. Rezwanul Parvez & Nazea Hasan Khan Chowdhury, 2020. "Weather and Crop Management Impact on Crop Yield Variability," Agriculture and Food Sciences Research, Asian Online Journal Publishing Group, vol. 7(1), pages 7-15.
    14. Costa, J.M. & Vaz, M. & Escalona, J. & Egipto, R. & Lopes, C. & Medrano, H. & Chaves, M.M., 2016. "Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity," Agricultural Water Management, Elsevier, vol. 164(P1), pages 5-18.
    15. Vamsi Krishna Vema & K. P. Sudheer & A. N. Rohith & I. Chaubey, 2022. "Impact of water conservation structures on the agricultural productivity in the context of climate change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1627-1644, March.
    16. García-López, J. & Lorite, I.J. & García-Ruiz, R. & Ordoñez, R. & Dominguez, J., 2016. "Yield response of sunflower to irrigation and fertilization under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 176(C), pages 151-162.
    17. Tamilarasu Arivelarasan & V. S. Manivasagam & Vellingiri Geethalakshmi & Kulanthaivel Bhuvaneswari & Kiruthika Natarajan & Mohan Balasubramanian & Ramasamy Gowtham & Raveendran Muthurajan, 2023. "How Far Will Climate Change Affect Future Food Security? An Inquiry into the Irrigated Rice System of Peninsular India," Agriculture, MDPI, vol. 13(3), pages 1-20, February.
    18. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    19. Oduor, Brian Omondi & Campo-Bescós, Miguel Ángel & Lana-Renault, Noemí & Casalí, Javier, 2023. "Effects of climate change on streamflow and nitrate pollution in an agricultural Mediterranean watershed in Northern Spain," Agricultural Water Management, Elsevier, vol. 285(C).
    20. Ali Firoozzare & Sayed Saghaian & Sasan Esfandiari Bahraseman & Maryam Dehghani Dashtabi, 2023. "Identifying the Best Strategies for Improving and Developing Sustainable Rain-Fed Agriculture: An Integrated SWOT-BWM-WASPAS Approach," Agriculture, MDPI, vol. 13(6), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:156:y:2017:i:c:p:76-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.