IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i13p4467-4490.html
   My bibliography  Save this article

System Dynamic Model for Crop Production, Water Footprint, and Virtual Water Nexus

Author

Listed:
  • Inas El-Gafy

Abstract

Intended for comprehensive assessment of water usage in agricultural for food production and to address its future, it is essential to scrutinize the dynamic behavior of crop production and its water footprint and virtual water trade. Through the current research a System Dynamic model that can be applied to estimate crop production, water footprint, and virtual water nexus was developed. The system could be applied to explore how water footprint of crop production and consumption change under proposed planned scenarios which differ from each other in terms of main drivers of change. The drivers of change include population, per capita crop consumption, crop trade patterns, crop yield, and climate change impact. The system is developed to be applied at the country level. A case study from Egypt was analyzed applying the developed system. Where, water footprint of wheat production (green, blue, and grey water), consumption (internal, import and export), and its virtual water balance for years 2010 to 2050 were analyzed under proposed planned scenarios. These proposed planned scenarios were varying in wheat trade pattern strategies and impact of climate change on wheat water consumption and its yield. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Inas El-Gafy, 2014. "System Dynamic Model for Crop Production, Water Footprint, and Virtual Water Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4467-4490, October.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:13:p:4467-4490
    DOI: 10.1007/s11269-014-0667-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0667-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0667-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sangam Shrestha & Vishnu Pandey & Chawalit Chanamai & Debapi Ghosh, 2013. "Green, Blue and Grey Water Footprints of Primary Crops Production in Nepal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5223-5243, December.
    2. Alaa El-Sadek, 2010. "Virtual Water Trade as a Solution for Water Scarcity in Egypt," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2437-2448, September.
    3. Liqiang Ge & Gaodi Xie & Caixia Zhang & Shimei Li & Yue Qi & Shuyan Cao & Tingting He, 2011. "An Evaluation of China’s Water Footprint," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2633-2647, August.
    4. S. Sun & P. Wu & Y. Wang & X. Zhao, 2013. "Temporal Variability of Water Footprint for Maize Production: The Case of Beijing from 1978 to 2008," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2447-2463, May.
    5. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    6. Zhihe Chen & Shuai Wei, 2014. "Application of System Dynamics to Water Security Research," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 287-300, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    2. Wouter Wolters & Robert Smit & Mohamed Nour El-Din & Eman Sayed Ahmed & Jochen Froebrich & Henk Ritzema, 2016. "Issues and Challenges in Spatial and Temporal Water Allocation in the Nile Delta," Sustainability, MDPI, vol. 8(4), pages 1-12, April.
    3. Zhai, Yijie & Bai, Yueyang & Wu, Zhen & Hong, Jinglan & Shen, Xiaoxu & Xie, Fei & Li, Xiangzhi, 2022. "Grain self-sufficiency versus environmental stress: An integration of system dynamics and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Hong, Yang, 2020. "Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt," Agricultural Water Management, Elsevier, vol. 235(C).
    5. Lei Jin & Yuanhua Chang & Xianwei Ju & Fei Xu, 2019. "A Study on the Sustainable Development of Water, Energy, and Food in China," IJERPH, MDPI, vol. 16(19), pages 1-16, September.
    6. Haojia Kong & Lifan Shi & Dan Da & Zhijiang Li & Decai Tang & Wei Xing, 2022. "Simulation of China’s Carbon Emission based on Influencing Factors," Energies, MDPI, vol. 15(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoxue Zheng & Lijie Qin & Hongshi He, 2020. "Impacts of Climatic and Agricultural Input Factors on the Water Footprint of Crop Production in Jilin Province, China," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    2. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    3. Fei Yin & Chang-xin Xu, 2020. "Quantifying the Inter- and Intra-Annual Variations in Regional Water Consumption and Scarcity Incorporating Water Quantity and Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2313-2327, June.
    4. Taleb Abu-Sharar & Emad Al-Karablieh & Munther Haddadin, 2012. "Role of Virtual Water in Optimizing Water Resources Management in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3977-3993, November.
    5. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    6. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    7. Tsoutsos, Theocharis & Chatzakis, Michael & Sarantopoulos, Ioannis & Nikologiannis, Athanasios & Pasadakis, Nikos, 2013. "Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds," Renewable Energy, Elsevier, vol. 57(C), pages 211-215.
    8. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    9. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    11. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    12. ur Rahman, Ghaus & Agarwal, Ravi P. & Din, Qamar, 2019. "Mathematical analysis of giving up smoking model via harmonic mean type incidence rate," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 128-148.
    13. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    14. Maite Aldaya & Pedro Martínez-Santos & M. Llamas, 2010. "Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 941-958, March.
    15. Julian Fulton & Heather Cooley & Peter Gleick, 2014. "Water Footprint Outcomes and Policy Relevance Change with Scale Considered: Evidence from California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3637-3649, September.
    16. Emilio José Delgado-Algarra & Isabel María Román Sánchez & Eva Ordóñez Olmedo & Antonio Alejandro Lorca-Marín, 2019. "International MOOC Trends in Citizenship, Participation and Sustainability: Analysis of Technical, Didactic and Content Dimensions," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    17. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    18. S. Brown & H. Schreier & L. Lavkulich, 2009. "Incorporating Virtual Water into Water Management: A British Columbia Example," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2681-2696, October.
    19. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    20. Gawel, Erik & Bernsen, Kristina, 2011. "What is wrong with virtual water trading?," UFZ Discussion Papers 1/2011, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:13:p:4467-4490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.