IDEAS home Printed from https://ideas.repec.org/a/spr/sumafo/v29y2021i2d10.1007_s00550-021-00514-8.html
   My bibliography  Save this article

The feasibility of energy autonomy for municipalities: local energy system optimisation and upscaling with cluster and regression analyses

Author

Listed:
  • Jann Michael Weinand

    (Karlsruhe Institute for Technology)

  • Russell McKenna

    (University of Aberdeen)

  • Wolf Fichtner

    (Karlsruhe Institute for Technology)

Abstract

The sheer number of alternative technologies and measures make the optimal planning of energy system transformations highly complex, requiring decision support from mathematical optimisation models. Due to the high computational expenses of these models, only individual case studies are usually examined. In this article, the approach from the author’s PhD thesis to transfer the optimisation results from individual case studies to many other energy systems is summarised. In the first step, a typology of the energy systems to be investigated was created. Based on this typology, representative energy systems were selected and analysed in an energy system optimisation model. In the third step, the results of the representative case studies were transferred to all other energy systems. This approach was applied to a case study for determining the minimum costs of energy system transformation for all 11,131 German municipalities from 2015 to 2035 in the completely energy autonomous case. While a technical potential to achieve energy autonomy is present in 56% of the German municipalities, energy autonomy shows only low economic potential under current energy-political conditions. However, energy system costs in the autonomous case can be greatly reduced by the installation and operation of base-load technologies like deep-geothermal plants combined with district heating networks. The developed approach can be applied to any type of energy system and should help decision makers, policy makers and researchers to estimate optimal results for a variety of energy systems using practical computational expenses.

Suggested Citation

  • Jann Michael Weinand & Russell McKenna & Wolf Fichtner, 2021. "The feasibility of energy autonomy for municipalities: local energy system optimisation and upscaling with cluster and regression analyses," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 153-159, June.
  • Handle: RePEc:spr:sumafo:v:29:y:2021:i:2:d:10.1007_s00550-021-00514-8
    DOI: 10.1007/s00550-021-00514-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00550-021-00514-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00550-021-00514-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    2. Weinand, Jann & Scheller, Fabian Johannes & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Working Paper Series in Production and Energy 41, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    3. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell, 2016. "Transforming the energy system: Why municipalities strive for energy self-sufficiency," Energy Policy, Elsevier, vol. 98(C), pages 365-377.
    4. Jann Michael Weinand & Fabian Scheller & Russell McKenna, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Papers 2011.05915, arXiv.org.
    5. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    6. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Schmidt, 2021. "Klimaschutz, Ressourcenschonung und Circular Economy als Einheit denken [Thinking of climate protection, resources conservation and the circular economy as a unit]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 57-64, June.
    2. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    3. Schmitt, Carlo & Schumann, Klemens & Kollenda, Katharina & Blank, Andreas & Rebenaque, Olivier & Dronne, Théo & Martin, Arnault & Vassilopoulos, Philippe & Roques, Fabien & Moser, Albert, 2022. "How will local energy markets influence the pan-European day-ahead market and transmission systems? A case study for local markets in France and Germany," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Rasmus Magni Johannsen & Poul Alberg Østergaard & David Maya-Drysdale & Louise Krog Elmegaard Mouritsen, 2021. "Designing Tools for Energy System Scenario Making in Municipal Energy Planning," Energies, MDPI, vol. 14(5), pages 1-17, March.
    3. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    4. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    5. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    6. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    7. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    8. Christoph Schick & Nikolai Klempp & Kai Hufendiek, 2021. "Impact of Network Charge Design in an Energy System with Large Penetration of Renewables and High Prosumer Shares," Energies, MDPI, vol. 14(21), pages 1-26, October.
    9. Yan, Xiaopeng & Chen, Baijin, 2021. "Analysis of a novel energy-efficient system with 3-D vertical structure for hydraulic press," Energy, Elsevier, vol. 218(C).
    10. Ádám Sleisz & Dániel Divényi & Beáta Polgári & Péter Sőrés & Dávid Raisz, 2022. "A Novel Cost Allocation Mechanism for Local Flexibility in the Power System with Partial Disintermediation," Energies, MDPI, vol. 15(22), pages 1-18, November.
    11. Sacha Hodencq & Mathieu Brugeron & Jaume Fitó & Lou Morriet & Benoit Delinchant & Frédéric Wurtz, 2021. "OMEGAlpes, an Open-Source Optimisation Model Generation Tool to Support Energy Stakeholders at District Scale," Energies, MDPI, vol. 14(18), pages 1-30, September.
    12. Vögele, Stefan & Poganietz, Witold-Roger & Kleinebrahm, Max & Weimer-Jehle, Wolfgang & Bernhard, Jesse & Kuckshinrichs, Wilhelm & Weiss, Annika, 2022. "Dissemination of PV-Battery systems in the German residential sector up to 2050: Technological diffusion from multidisciplinary perspectives," Energy, Elsevier, vol. 248(C).
    13. Matthias Greiml & Florian Fritz & Josef Steinegger & Theresa Schlömicher & Nicholas Wolf Williams & Negar Zaghi & Thomas Kienberger, 2022. "Modelling and Simulation/Optimization of Austria’s National Multi-Energy System with a High Degree of Spatial and Temporal Resolution," Energies, MDPI, vol. 15(10), pages 1-33, May.
    14. Min-Hwi Kim & Deuk-Won Kim & Dong-Won Lee, 2021. "Feasibility of Low Carbon Renewable Energy City Integrated with Hybrid Renewable Energy Systems," Energies, MDPI, vol. 14(21), pages 1-24, November.
    15. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    16. Galleguillos-Pozo, R. & Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2021. "Design of stand-alone electrification systems using fuzzy mathematical programming approaches," Energy, Elsevier, vol. 228(C).
    17. Chen, Yi-kuang & Jensen, Ida Græsted & Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland, 2021. "Impact of fossil-free decentralized heating on northern European renewable energy deployment and the power system," Energy, Elsevier, vol. 219(C).
    18. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    19. Zielinski, Michał & Myszkowski, Adam & Pelic, Marcin & Staniek, Roman, 2022. "Low-speed radial piston pump as an effective alternative power transmission for small hydropower plants," Renewable Energy, Elsevier, vol. 182(C), pages 1012-1027.
    20. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sumafo:v:29:y:2021:i:2:d:10.1007_s00550-021-00514-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.