IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3581-d815095.html
   My bibliography  Save this article

Modelling and Simulation/Optimization of Austria’s National Multi-Energy System with a High Degree of Spatial and Temporal Resolution

Author

Listed:
  • Matthias Greiml

    (Energy Network Technology, Montanuniversitaet of Leoben, 8700 Leoben, Austria)

  • Florian Fritz

    (Energy Network Technology, Montanuniversitaet of Leoben, 8700 Leoben, Austria)

  • Josef Steinegger

    (Energy Network Technology, Montanuniversitaet of Leoben, 8700 Leoben, Austria)

  • Theresa Schlömicher

    (Energy Network Technology, Montanuniversitaet of Leoben, 8700 Leoben, Austria)

  • Nicholas Wolf Williams

    (Energy Network Technology, Montanuniversitaet of Leoben, 8700 Leoben, Austria)

  • Negar Zaghi

    (Energy Network Technology, Montanuniversitaet of Leoben, 8700 Leoben, Austria)

  • Thomas Kienberger

    (Energy Network Technology, Montanuniversitaet of Leoben, 8700 Leoben, Austria)

Abstract

The European Union and the Austrian government have set ambitious plans to expand renewable energy sources and lower carbon dioxide emissions. However, the expansion of volatile renewable energy sources may affect today’s energy system. To investigate future challenges in Austria’s energy system, a suitable simulation methodology, temporal and spatially resolved generation and consumption data and energy grid depiction, is necessary. In this paper, we introduce a flexible multi-energy simulation framework with optimization capabilities that can be applied to a broad range of use cases. Furthermore, it is shown how a spatially and temporally resolved multi-energy system model can be set up on a national scale. To consider actual infrastructure properties, a detailed energy grid depiction is considered. Three scenarios assess the potential future energy system of Austria, focusing on the power grid, based on the government’s renewable energy sources expansion targets in the year 2030. Results show that the overwhelming majority of line overloads accrue in Austria’s power distribution grid. Furthermore, the mode of operation of flexible consumer and generation also affects the number of line overloads as well.

Suggested Citation

  • Matthias Greiml & Florian Fritz & Josef Steinegger & Theresa Schlömicher & Nicholas Wolf Williams & Negar Zaghi & Thomas Kienberger, 2022. "Modelling and Simulation/Optimization of Austria’s National Multi-Energy System with a High Degree of Spatial and Temporal Resolution," Energies, MDPI, vol. 15(10), pages 1-33, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3581-:d:815095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Benjamin Böckl & Matthias Greiml & Lukas Leitner & Patrick Pichler & Lukas Kriechbaum & Thomas Kienberger, 2019. "HyFlow—A Hybrid Load Flow-Modelling Framework to Evaluate the Effects of Energy Storage and Sector Coupling on the Electrical Load Flows," Energies, MDPI, vol. 12(5), pages 1-25, March.
    3. Bernd Thormann & Thomas Kienberger, 2020. "Evaluation of Grid Capacities for Integrating Future E-Mobility and Heat Pumps into Low-Voltage Grids," Energies, MDPI, vol. 13(19), pages 1-30, September.
    4. Shi, Huaizhou & Blaauwbroek, Niels & Nguyen, Phuong H. & Kamphuis, René (I.G.), 2016. "Energy management in Multi-Commodity Smart Energy Systems with a greedy approach," Applied Energy, Elsevier, vol. 167(C), pages 385-396.
    5. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Weinand, Jann & Scheller, Fabian Johannes & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Working Paper Series in Production and Energy 41, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    7. Sejkora, Christoph & Kühberger, Lisa & Radner, Fabian & Trattner, Alexander & Kienberger, Thomas, 2022. "Exergy as criteria for efficient energy systems – Maximising energy efficiency from resource to energy service, an Austrian case study," Energy, Elsevier, vol. 239(PC).
    8. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    9. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    10. Greiml, Matthias & Fritz, Florian & Kienberger, Thomas, 2021. "Increasing installable photovoltaic power by implementing power-to-gas as electricity grid relief – A techno-economic assessment," Energy, Elsevier, vol. 235(C).
    11. Daniel Lohmeier & Dennis Cronbach & Simon Ruben Drauz & Martin Braun & Tanja Manuela Kneiske, 2020. "Pandapipes: An Open-Source Piping Grid Calculation Package for Multi-Energy Grid Simulations," Sustainability, MDPI, vol. 12(23), pages 1-39, November.
    12. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    13. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    14. Luigi Bottecchia & Pietro Lubello & Pietro Zambelli & Carlo Carcasci & Lukas Kranzl, 2021. "The Potential of Simulating Energy Systems: The Multi Energy Systems Simulator Model," Energies, MDPI, vol. 14(18), pages 1-27, September.
    15. Chen, Zexing & Zhang, Yongjun & Tang, Wenhu & Lin, Xiaoming & Li, Qifeng, 2019. "Generic modelling and optimal day-ahead dispatch of micro-energy system considering the price-based integrated demand response," Energy, Elsevier, vol. 176(C), pages 171-183.
    16. Jann Michael Weinand & Fabian Scheller & Russell McKenna, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Papers 2011.05915, arXiv.org.
    17. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    18. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steinegger, Josef & Wallner, Stefan & Greiml, Matthias & Kienberger, Thomas, 2023. "A new quasi-dynamic load flow calculation for district heating networks," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    3. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    4. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    5. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    6. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    7. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    9. Nils Korber & Maximilian Rohrig & Andreas Ulbig, 2022. "A stakeholder-oriented multi-criteria optimization model for decentral multi-energy systems," Papers 2204.06545, arXiv.org.
    10. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    11. Chen, Yi-kuang & Jensen, Ida Græsted & Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland, 2021. "Impact of fossil-free decentralized heating on northern European renewable energy deployment and the power system," Energy, Elsevier, vol. 219(C).
    12. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    13. Schmid, Fabian & Behrendt, Frank, 2023. "Genetic sizing optimization of residential multi-carrier energy systems: The aim of energy autarky and its cost," Energy, Elsevier, vol. 262(PA).
    14. Richard Wallsgrove & Jisuk Woo & Jae-Hyup Lee & Lorraine Akiba, 2021. "The Emerging Potential of Microgrids in the Transition to 100% Renewable Energy Systems," Energies, MDPI, vol. 14(6), pages 1-28, March.
    15. Greiml, Matthias & Fritz, Florian & Kienberger, Thomas, 2021. "Increasing installable photovoltaic power by implementing power-to-gas as electricity grid relief – A techno-economic assessment," Energy, Elsevier, vol. 235(C).
    16. Johannsen, Rasmus Magni & Prina, Matteo Giacomo & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Sparber, Wolfram, 2023. "Municipal energy system modelling – A practical comparison of optimisation and simulation approaches," Energy, Elsevier, vol. 269(C).
    17. Lukas Kriechbaum & Thomas Kienberger, 2020. "Optimal Municipal Energy System Design and Operation Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(1), pages 1-28, January.
    18. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    19. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    20. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3581-:d:815095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.