IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5724-d633357.html
   My bibliography  Save this article

The Potential of Simulating Energy Systems: The Multi Energy Systems Simulator Model

Author

Listed:
  • Luigi Bottecchia

    (Institute of Renewable Energy, Eurac Research, Via A.Volta 13/A, 39100 Bolzano, Italy
    Energy Economics Group, Institute of Energy Systems and Electrical Drives, Technische Universität Wien, Gusshausstraße 25-29/370-3, 1040 Vienna, Austria
    These authors contributed equally to this work.)

  • Pietro Lubello

    (Department of Industrial Engineering, University of Florence, Via Santa Marta 3, 50139 Firenze, Italy
    These authors contributed equally to this work.)

  • Pietro Zambelli

    (Institute of Renewable Energy, Eurac Research, Via A.Volta 13/A, 39100 Bolzano, Italy)

  • Carlo Carcasci

    (Department of Industrial Engineering, University of Florence, Via Santa Marta 3, 50139 Firenze, Italy)

  • Lukas Kranzl

    (Energy Economics Group, Institute of Energy Systems and Electrical Drives, Technische Universität Wien, Gusshausstraße 25-29/370-3, 1040 Vienna, Austria)

Abstract

Energy system modelling is an essential practice to assist a set of heterogeneous stakeholders in the process of defining an effective and efficient energy transition. From the analysis of a set of open-source energy system models, it emerged that most models employ an approach directed at finding the optimal solution for a given set of constraints. On the contrary, a simulation model is a representation of a system used to reproduce and understand its behaviour under given conditions without seeking an optimal solution. In this paper, a new open-source energy system model is presented. Multi Energy Systems Simulator (MESS) is a modular, multi-energy carrier, multi-node model that allows the investigation of non optimal solutions by simulating an energy system. The model was built for urban level analyses. However, each node can represent larger regions allowing wider spatial scales to be represented as well. In this work, the tool’s features are presented through a comparison between MESS and Calliope, a state of the art optimization model, to analyse and highlight the differences between the two approaches, the potentialities of a simulation tool and possible areas for further development. The two models produced coherent results, showing differences that were tracked down to the different approaches. Based on the comparison conducted, general conclusions were drawn on the potential of simulating energy systems in terms of a more realistic description of smaller energy systems, lower computational times and increased opportunity for participatory processes in planning urban energy systems.

Suggested Citation

  • Luigi Bottecchia & Pietro Lubello & Pietro Zambelli & Carlo Carcasci & Lukas Kranzl, 2021. "The Potential of Simulating Energy Systems: The Multi Energy Systems Simulator Model," Energies, MDPI, vol. 14(18), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5724-:d:633357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niina Helistö & Juha Kiviluoma & Jussi Ikäheimo & Topi Rasku & Erkka Rinne & Ciara O’Dwyer & Ran Li & Damian Flynn, 2019. "Backbone—An Adaptable Energy Systems Modelling Framework," Energies, MDPI, vol. 12(17), pages 1-34, September.
    2. Henrik Lund & Finn Arler & Poul Alberg Østergaard & Frede Hvelplund & David Connolly & Brian Vad Mathiesen & Peter Karnøe, 2017. "Simulation versus Optimisation: Theoretical Positions in Energy System Modelling," Energies, MDPI, vol. 10(7), pages 1-17, June.
    3. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    4. Jaccard,Mark, 2006. "Sustainable Fossil Fuels," Cambridge Books, Cambridge University Press, number 9780521679794.
    5. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    6. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    7. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2017. "GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas," Applied Energy, Elsevier, vol. 191(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Greiml & Florian Fritz & Josef Steinegger & Theresa Schlömicher & Nicholas Wolf Williams & Negar Zaghi & Thomas Kienberger, 2022. "Modelling and Simulation/Optimization of Austria’s National Multi-Energy System with a High Degree of Spatial and Temporal Resolution," Energies, MDPI, vol. 15(10), pages 1-33, May.
    2. Marialaura Di Somma & Martina Caliano & Viviana Cigolotti & Giorgio Graditi, 2021. "Investigating Hydrogen-Based Non-Conventional Storage for PV Power in Eco-Energetic Optimization of a Multi-Energy System," Energies, MDPI, vol. 14(23), pages 1-17, December.
    3. Luca Casamassima & Luigi Bottecchia & Axel Bruck & Lukas Kranzl & Reinhard Haas, 2022. "Economic, social, and environmental aspects of Positive Energy Districts—A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Huckebrink, David & Bertsch, Valentin, 2022. "Decarbonising the residential heating sector: A techno-economic assessment of selected technologies," Energy, Elsevier, vol. 257(C).
    3. Henke, Hauke T.J. & Gardumi, Francesco & Howells, Mark, 2022. "The open source electricity Model Base for Europe - An engagement framework for open and transparent European energy modelling," Energy, Elsevier, vol. 239(PA).
    4. Fabian Scheller & Frauke Wiese & Jann Michael Weinand & Dominik Franjo Dominkovi'c & Russell McKenna, 2021. "An expert survey to assess the current status and future challenges of energy system analysis," Papers 2106.15518, arXiv.org.
    5. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    6. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    8. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    9. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    10. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    11. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.
    12. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    13. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    14. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    16. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2018. "Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach," Applied Energy, Elsevier, vol. 230(C), pages 1157-1171.
    17. Bartolini, Andrea & Comodi, Gabriele & Salvi, Danilo & Østergaard, Poul Alberg, 2020. "Renewables self-consumption potential in districts with high penetration of electric vehicles," Energy, Elsevier, vol. 213(C).
    18. Johannsen, Rasmus Magni & Prina, Matteo Giacomo & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Sparber, Wolfram, 2023. "Municipal energy system modelling – A practical comparison of optimisation and simulation approaches," Energy, Elsevier, vol. 269(C).
    19. Marrero-Trujillo, Verónica & Arias-Gaviria, Jessica & Arango-Aramburo, Santiago & Larsen, Erik R., 2023. "Gamification model for communicating and evaluating renewable energy planning," Utilities Policy, Elsevier, vol. 84(C).
    20. Oliver Gregor Gorbach & Jessica Thomsen, 2022. "Comparing the Energy System of a Facility with Uncertainty about Future Internal Carbon Prices and Energy Carrier Costs Using Deterministic Optimisation and Two-Stage Stochastic Programming," Energies, MDPI, vol. 15(10), pages 1-39, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5724-:d:633357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.