IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp1012-1027.html
   My bibliography  Save this article

Low-speed radial piston pump as an effective alternative power transmission for small hydropower plants

Author

Listed:
  • Zielinski, Michał
  • Myszkowski, Adam
  • Pelic, Marcin
  • Staniek, Roman

Abstract

Low-head hydropower bears tremendous potential as a renewable energy source, especially in the context of the progressing global warming. In locations with a low head, for economic and environmental reasons, a small hydropower plant with a waterwheel and an asynchronous generator may provide the best solution for sustainable electricity production. The purpose of this study is to demonstrate a new type of low-speed radial piston pump intended to be part of the hydrostatic transmission of such a small hydropower plant. The advantage of the transmission is the possibility of stepless, automatic change of the gear ratio during operation. First, we describe a mathematical model of the proposed pump and subsequently demonstrate a test stand equipped with its prototype with three suction-pressure units. The pump flow rate characteristics calculated using the theoretical model were compared with those obtained from experiments, resulting in the determination and characterization of the pump's efficiency. Supplementary experiments with a hydraulic accumulator installed as part of the investigated system, demonstrated the possibility of flow rate pulsation dampening. The experimental results showed the validity of the developed mathematical model. In conclusion, the correct operation of the pump was corroborated, and its potential application confirmed by the efficiency results.

Suggested Citation

  • Zielinski, Michał & Myszkowski, Adam & Pelic, Marcin & Staniek, Roman, 2022. "Low-speed radial piston pump as an effective alternative power transmission for small hydropower plants," Renewable Energy, Elsevier, vol. 182(C), pages 1012-1027.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:1012-1027
    DOI: 10.1016/j.renene.2021.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Hongwei & Lin, Yonggang & Shi, Maoshun & Li, Wei & Gu, Haigang & Xu, Quankun & Tu, Le, 2015. "A novel hydraulic-mechanical hybrid transmission in tidal current turbines," Renewable Energy, Elsevier, vol. 81(C), pages 31-42.
    2. Sen, Souvik & Ganguly, Sourav, 2017. "Opportunities, barriers and issues with renewable energy development – A discussion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1170-1181.
    3. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Wojciech Dybaś, 2019. "Capacity Market Implementation in Poland: Analysis of a Survey on Consequences for the Electricity Market and for Energy Management," Energies, MDPI, vol. 12(5), pages 1-16, March.
    4. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    5. Edson Bortoni & Zulcy de Souza & Augusto Viana & Helcio Villa-Nova & Ângelo Rezek & Luciano Pinto & Roberto Siniscalchi & Rafael Bragança & José Bernardes, 2019. "The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines," Energies, MDPI, vol. 12(19), pages 1-20, September.
    6. Quaranta, Emanuele & Revelli, Roberto, 2018. "Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 414-427.
    7. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    8. Fan, YaJun & Mu, AnLe & Ma, Tao, 2016. "Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator," Energy, Elsevier, vol. 112(C), pages 188-199.
    9. Wang, Feng & Chen, Jincheng & Xu, Bing & Stelson, Kim A., 2019. "Improving the reliability and energy production of large wind turbine with a digital hydrostatic drivetrain," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    11. Weinand, Jann & Scheller, Fabian Johannes & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Working Paper Series in Production and Energy 41, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    12. Roggenburg, Michael & Esquivel-Puentes, Helber A. & Vacca, Andrea & Bocanegra Evans, Humberto & Garcia-Bravo, Jose M. & Warsinger, David M. & Ivantysynova, Monika & Castillo, Luciano, 2020. "Techno-economic analysis of a hydraulic transmission for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1194-1204.
    13. Silva, Paolo & Giuffrida, Antonio & Fergnani, Nicola & Macchi, Ennio & Cantù, Matteo & Suffredini, Roberto & Schiavetti, Massimo & Gigliucci, Gianluca, 2014. "Performance prediction of a multi-MW wind turbine adopting an advanced hydrostatic transmission," Energy, Elsevier, vol. 64(C), pages 450-461.
    14. Punys, Petras & Kvaraciejus, Algis & Dumbrauskas, Antanas & Šilinis, Linas & Popa, Bogdan, 2019. "An assessment of micro-hydropower potential at historic watermill, weir, and non-powered dam sites in selected EU countries," Renewable Energy, Elsevier, vol. 133(C), pages 1108-1123.
    15. Jann Michael Weinand & Fabian Scheller & Russell McKenna, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Papers 2011.05915, arXiv.org.
    16. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    17. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    18. Minh Tri Nguyen & Tri Dung Dang & Kyoung Kwan Ahn, 2019. "Application of Electro-Hydraulic Actuator System to Control Continuously Variable Transmission in Wind Energy Converter," Energies, MDPI, vol. 12(13), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ádám Sleisz & Dániel Divényi & Beáta Polgári & Péter Sőrés & Dávid Raisz, 2022. "A Novel Cost Allocation Mechanism for Local Flexibility in the Power System with Partial Disintermediation," Energies, MDPI, vol. 15(22), pages 1-18, November.
    2. Rasmus Magni Johannsen & Poul Alberg Østergaard & David Maya-Drysdale & Louise Krog Elmegaard Mouritsen, 2021. "Designing Tools for Energy System Scenario Making in Municipal Energy Planning," Energies, MDPI, vol. 14(5), pages 1-17, March.
    3. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    4. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    5. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Schmid, Fabian & Behrendt, Frank, 2023. "Genetic sizing optimization of residential multi-carrier energy systems: The aim of energy autarky and its cost," Energy, Elsevier, vol. 262(PA).
    7. Richard Wallsgrove & Jisuk Woo & Jae-Hyup Lee & Lorraine Akiba, 2021. "The Emerging Potential of Microgrids in the Transition to 100% Renewable Energy Systems," Energies, MDPI, vol. 14(6), pages 1-28, March.
    8. Bartosz Ceran & Jakub Jurasz & Robert Wróblewski & Adam Guderski & Daria Złotecka & Łukasz Kaźmierczak, 2020. "Impact of the Minimum Head on Low-Head Hydropower Plants Energy Production and Profitability," Energies, MDPI, vol. 13(24), pages 1-21, December.
    9. Johannsen, Rasmus Magni & Prina, Matteo Giacomo & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Sparber, Wolfram, 2023. "Municipal energy system modelling – A practical comparison of optimisation and simulation approaches," Energy, Elsevier, vol. 269(C).
    10. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    11. Jann Michael Weinand & Russell McKenna & Wolf Fichtner, 2021. "The feasibility of energy autonomy for municipalities: local energy system optimisation and upscaling with cluster and regression analyses," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 153-159, June.
    12. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    13. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    14. Sidra Aslam & Viktor Bukovszki & Michael Mrissa, 2021. "Decentralized Data Management Privacy-Aware Framework for Positive Energy Districts," Energies, MDPI, vol. 14(21), pages 1-22, October.
    15. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    17. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    18. Christoph Schick & Nikolai Klempp & Kai Hufendiek, 2021. "Impact of Network Charge Design in an Energy System with Large Penetration of Renewables and High Prosumer Shares," Energies, MDPI, vol. 14(21), pages 1-26, October.
    19. Yan, Xiaopeng & Chen, Baijin, 2021. "Analysis of a novel energy-efficient system with 3-D vertical structure for hydraulic press," Energy, Elsevier, vol. 218(C).
    20. Sacha Hodencq & Mathieu Brugeron & Jaume Fitó & Lou Morriet & Benoit Delinchant & Frédéric Wurtz, 2021. "OMEGAlpes, an Open-Source Optimisation Model Generation Tool to Support Energy Stakeholders at District Scale," Energies, MDPI, vol. 14(18), pages 1-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:1012-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.