Advanced Search
MyIDEAS: Login

Social choice, optimal inference and figure skating

Contents:

Author Info

  • Stephen Gordon

    ()

  • Michel Truchon

    ()

Abstract

We approach the social choice problem as one of optimal statistical inference. If individual voters or judges observe the true order ona set of alternatives with error, then it is possible to use the set of individual rankings to make probability statements about the correct social order. Given the posterior distribution for orders and a suitably chosen loss function, an optimal order is one that minimises expected posterior loss. The paper develops a statistical model describing the behaviour of judges, and discusses Markov Chain Monte Carlo estimation. We also discuss criteria for choosing the appropriate loss functions. We apply our methods to a well-known problem: determining the correct ranking for figure skaters competing at the Olympic Games.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s00355-007-0243-2
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal Social Choice and Welfare.

Volume (Year): 30 (2008)
Issue (Month): 2 (February)
Pages: 265-284

as in new window
Handle: RePEc:spr:sochwe:v:30:y:2008:i:2:p:265-284

Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00355/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Truchon, Michel, 2004. "Aggregation of Rankings in Figure Skating," Cahiers de recherche 0402, Université Laval - Département d'économique.
  2. Michel Truchon, 2005. "Aggregation of Rankings: a Brief Review of Distance-Based Rules," Cahiers de recherche 0534, CIRPEE.
  3. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, December.
  4. Truchon, Michel & Gordon, Stephen, 2009. "Statistical comparison of aggregation rules for votes," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 199-212, March.
  5. Peyton Young, 1995. "Optimal Voting Rules," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 51-64, Winter.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Pivato, Marcus, 2011. "Voting rules as statistical estimators," MPRA Paper 30292, University Library of Munich, Germany.
  2. Michel Truchon, 2002. "Choix social et comités de sélection : le cas du patinage artistique," CIRANO Burgundy Reports 2002rb-02, CIRANO.
  3. Truchon, Michel & Gordon, Stephen, 2009. "Statistical comparison of aggregation rules for votes," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 199-212, March.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:30:y:2008:i:2:p:265-284. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.