IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v8y2016i1d10.1007_s12469-015-0115-6.html
   My bibliography  Save this article

Do regular timetables help to reduce delays in tram networks? It depends!

Author

Listed:
  • Oliver Ullrich

    (Florida International University)

  • Daniel Lückerath

    (Universität zu Köln)

  • Ewald Speckenmeyer

    (Universität zu Köln)

Abstract

In public transit planning, regularity of timetables is seen as an important means to improve capacity efficiency by assuring an even trip distribution, as well as to improve product attractiveness and appreciation. This paper focuses on examining whether a regular timetable can also help to reduce network delay, especially resulting from inevitable small disturbances. Following the formulation of a mathematical optimization approach, we propose a number of conditions a network has to fulfill for timetable regularity to have a delay reducing impact. A set of three network properties is identified, which consists of (a) the sharing of resources between tram lines, (b) a low variability of driving times, and (c) the non-redundancy of the network’s central resources. To test the impact of these properties, a series of optimization and simulation experiments is conducted on models of the tram network of the cities of Cologne, Germany, and Montpellier, France. Small disturbances are introduced to the simulated operations to check whether the presence of all three properties is necessary for a network to benefit from a regular timetable. The results show that while with all properties present a regular timetable can indeed help to reduce delays resulting from small disturbances, the non-compliance with any one of the conditions nullifies the impact of regularity on the result.

Suggested Citation

  • Oliver Ullrich & Daniel Lückerath & Ewald Speckenmeyer, 2016. "Do regular timetables help to reduce delays in tram networks? It depends!," Public Transport, Springer, vol. 8(1), pages 39-56, March.
  • Handle: RePEc:spr:pubtra:v:8:y:2016:i:1:d:10.1007_s12469-015-0115-6
    DOI: 10.1007/s12469-015-0115-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-015-0115-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-015-0115-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibarra-Rojas, Omar J. & Rios-Solis, Yasmin A., 2012. "Synchronization of bus timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 599-614.
    2. Ceder, A. & Golany, B. & Tal, O., 2001. "Creating bus timetables with maximal synchronization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 913-928, December.
    3. Valentina Cacchiani & Alberto Caprara & Matteo Fischetti, 2012. "A Lagrangian Heuristic for Robustness, with an Application to Train Timetabling," Transportation Science, INFORMS, vol. 46(1), pages 124-133, February.
    4. Turnquist, Mark A. & Bowman, Larry A., 1980. "The effects of network structure on reliability of transit service," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 79-86.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar J. Ibarra-Rojas & Fernando López-Irarragorri & Yasmin A. Rios-Solis, 2016. "Multiperiod Bus Timetabling," Transportation Science, INFORMS, vol. 50(3), pages 805-822, August.
    2. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    3. Jakub OZIOMEK & Andrzej ROGOWSKI, 2018. "Improvement Of Regularity Of Urban Public Transport Lines By Means Of Intervals Synchronization," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(4), pages 91-102, December.
    4. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    5. Guo, Xin & Wu, Jianjun & Sun, Huijun & Yang, Xin & Jin, Jian Gang & Wang, David Z.W., 2020. "Scheduling synchronization in urban rail transit networks: Trade-offs between transfer passenger and last train operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 463-490.
    6. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    7. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    8. Zheng, Hankun & Sun, Huijun & Kang, Liujiang & Dai, Peiling & Wu, Jianjun, 2023. "Multi-route coordination for bus systems in response to road disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    9. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    10. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Puchinger, Jakob & Ruthmair, Mario & Hu, Bin, 2016. "Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 17-36.
    11. Chu, James C. & Korsesthakarn, Kanticha & Hsu, Yu-Ting & Wu, Hua-Yen, 2019. "Models and a solution algorithm for planning transfer synchronization of bus timetables," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 247-266.
    12. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    13. Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.
    14. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
    15. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    16. Cortés, Cristián E. & Gil, Cristiam & Gschwender, Antonio & Rey, Pablo A., 2023. "The bus synchronization timetabling problem with dwelling times," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    17. Fonseca, João Paiva & van der Hurk, Evelien & Roberti, Roberto & Larsen, Allan, 2018. "A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 128-149.
    18. Fouilhoux, P. & Ibarra-Rojas, O.J. & Kedad-Sidhoum, S. & Rios-Solis, Y.A., 2016. "Valid inequalities for the synchronization bus timetabling problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 442-450.
    19. Liu, Tao & Ceder, Avishai (Avi), 2018. "Integrated public transport timetable synchronization and vehicle scheduling with demand assignment: A bi-objective bi-level model using deficit function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 935-955.
    20. Ioannou, Petros & Chen, Pengfei, 2023. "Centrally Coordinated Schedules and Routes of Airport Shuttles with LAX Terminals as Application Area," Institute of Transportation Studies, Working Paper Series qt6gg7r6c5, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:8:y:2016:i:1:d:10.1007_s12469-015-0115-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.