IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v82y2017i1d10.1007_s11336-016-9532-y.html
   My bibliography  Save this article

Generalized SAMPLE SIZE Determination Formulas for Investigating Contextual Effects by a Three-Level Random Intercept Model

Author

Listed:
  • Satoshi Usami

    (University of Tsukuba)

Abstract

Behavioral and psychological researchers have shown strong interests in investigating contextual effects (i.e., the influences of combinations of individual- and group-level predictors on individual-level outcomes). The present research provides generalized formulas for determining the sample size needed in investigating contextual effects according to the desired level of statistical power as well as width of confidence interval. These formulas are derived within a three-level random intercept model that includes one predictor/contextual variable at each level to simultaneously cover various kinds of contextual effects that researchers can show interest. The relative influences of indices included in the formulas on the standard errors of contextual effects estimates are investigated with the aim of further simplifying sample size determination procedures. In addition, simulation studies are performed to investigate finite sample behavior of calculated statistical power, showing that estimated sample sizes based on derived formulas can be both positively and negatively biased due to complex effects of unreliability of contextual variables, multicollinearity, and violation of assumption regarding the known variances. Thus, it is advisable to compare estimated sample sizes under various specifications of indices and to evaluate its potential bias, as illustrated in the example.

Suggested Citation

  • Satoshi Usami, 2017. "Generalized SAMPLE SIZE Determination Formulas for Investigating Contextual Effects by a Three-Level Random Intercept Model," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 133-157, March.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:1:d:10.1007_s11336-016-9532-y
    DOI: 10.1007/s11336-016-9532-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-016-9532-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-016-9532-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David M. Murray & Jonathan L. Blitstein, 2003. "Methods To Reduce The Impact Of Intraclass Correlation In Group-Randomized Trials," Evaluation Review, , vol. 27(1), pages 79-103, February.
    2. Franklin Satterthwaite, 1941. "Synthesis of variance," Psychometrika, Springer;The Psychometric Society, vol. 6(5), pages 309-316, October.
    3. Donald Hedeker & Robert D. Gibbons & Christine Waternaux, 1999. "Sample Size Estimation for Longitudinal Designs with Attrition: Comparing Time-Related Contrasts Between Two Groups," Journal of Educational and Behavioral Statistics, , vol. 24(1), pages 70-93, March.
    4. Moonseong Heo & Andrew C. Leon, 2008. "Statistical Power and Sample Size Requirements for Three Level Hierarchical Cluster Randomized Trials," Biometrics, The International Biometric Society, vol. 64(4), pages 1256-1262, December.
    5. Tom A. B. Snijders & Roel J. Bosker, 1993. "Standard Errors and Sample Sizes for Two-Level Research," Journal of Educational and Behavioral Statistics, , vol. 18(3), pages 237-259, September.
    6. Yongyun Shin & Stephen W. Raudenbush, 2010. "A Latent Cluster-Mean Approach to the Contextual Effects Model With Missing Data," Journal of Educational and Behavioral Statistics, , vol. 35(1), pages 26-53, February.
    7. Heo, Moonseong & Xue, Xiaonan & Kim, Mimi Y., 2013. "Sample size requirements to detect an intervention by time interaction in longitudinal cluster randomized clinical trials with random slopes," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 169-178.
    8. Michael A. Rotondi & Allan Donner, 2009. "Sample Size Estimation in Cluster Randomized Educational Trials: An Empirical Bayes Approach," Journal of Educational and Behavioral Statistics, , vol. 34(2), pages 229-237, June.
    9. Anindya Roy & Dulal K. Bhaumik & Subhash Aryal & Robert D. Gibbons, 2007. "Sample Size Determination for Hierarchical Longitudinal Designs with Differential Attrition Rates," Biometrics, The International Biometric Society, vol. 63(3), pages 699-707, September.
    10. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "Generalized multilevel structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 167-190, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas J. Rockwood, 2020. "Maximum Likelihood Estimation of Multilevel Structural Equation Models with Random Slopes for Latent Covariates," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 275-300, June.
    2. Heo, Moonseong & Xue, Xiaonan & Kim, Mimi Y., 2013. "Sample size requirements to detect an intervention by time interaction in longitudinal cluster randomized clinical trials with random slopes," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 169-178.
    3. Steven Teerenstra & Bing Lu & John S. Preisser & Theo van Achterberg & George F. Borm, 2010. "Sample Size Considerations for GEE Analyses of Three-Level Cluster Randomized Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1230-1237, December.
    4. Anup Amatya & Dulal K. Bhaumik, 2018. "Sample size determination for multilevel hierarchical designs using generalized linear mixed models," Biometrics, The International Biometric Society, vol. 74(2), pages 673-684, June.
    5. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    6. Ryan Mullins & Raj Agnihotri, 2022. "Digital selling: organizational and managerial influences for frontline readiness and effectiveness," Journal of the Academy of Marketing Science, Springer, vol. 50(4), pages 800-821, July.
    7. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    8. Narayan Sastry & Bonnie Ghosh-Dastidar & John Adams & Anne R. Pebley, 2003. "The Design of Multilevel Survey of Children, Families, and Communities: The Los Angeles Family and Neighborhood Survey," Working Papers 03-21, RAND Corporation.
    9. Sun-Joo Cho & Allan S. Cohen, 2010. "A Multilevel Mixture IRT Model With an Application to DIF," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 336-370, June.
    10. Christine T Cigolle & Corey L Nagel & Caroline S Blaum & Jersey Liang & Ana R Quiñones, 2018. "Inconsistency in the Self-report of Chronic Diseases in Panel Surveys: Developing an Adjudication Method for the Health and Retirement Study," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 73(5), pages 901-912.
    11. Pesko, Michael F. & Baum, Christopher F., 2016. "The self-medication hypothesis: Evidence from terrorism and cigarette accessibility," Economics & Human Biology, Elsevier, vol. 22(C), pages 94-102.
    12. Bambio, Yiriyibin & Bouayad Agha, Salima, 2018. "Land tenure security and investment: Does strength of land right really matter in rural Burkina Faso?," World Development, Elsevier, vol. 111(C), pages 130-147.
    13. Joseph Fleiss, 1970. "Estimating the reliability of interview data," Psychometrika, Springer;The Psychometric Society, vol. 35(2), pages 143-162, June.
    14. Andrew K. Rose & Mark M. Spiegel, 2010. "Cross‐Country Causes And Consequences Of The 2008 Crisis: International Linkages And American Exposure," Pacific Economic Review, Wiley Blackwell, vol. 15(3), pages 340-363, August.
    15. Michela Battauz & Ruggero Bellio, 2011. "Structural Modeling of Measurement Error in Generalized Linear Models with Rasch Measures as Covariates," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 40-56, January.
    16. J. Davenport & J. Webster, 1975. "The Behrens-Fisher problem, an old solution revisited," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 22(1), pages 47-54, December.
    17. Axel Dreher & Merle Kreibaum, 2016. "Weapons of choice," Journal of Peace Research, Peace Research Institute Oslo, vol. 53(4), pages 539-553, July.
    18. Chiou, Paul, 1997. "Interval estimation of scale parameters following a pre-test for two exponential distributions," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 477-489, February.
    19. Hakan Aslan & Burcak Vatansever, 2018. "Efficiency of Knowledge Inflow Structures: The Mediation Effect of Task Environment Analysis," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 7(4), pages 30-43, October.
    20. Mikkel Helding Vembye & James Eric Pustejovsky & Therese Deocampo Pigott, 2023. "Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 70-102, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:1:d:10.1007_s11336-016-9532-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.