IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v83y2016i3d10.1007_s11069-016-2381-2.html
   My bibliography  Save this article

Effects of variance adjustment techniques and time-invariant transfer functions on heat wave duration indices and other metrics derived from downscaled time-series. Study case: Montreal, Canada

Author

Listed:
  • Carlos F. Gaitán

    (South Central Climate Science Center
    University of Oklahoma
    NOAA – GFDL)

Abstract

Statistical downscaling techniques are often used to generate finer-scale projections of climate variables affected by local-scale processes not resolved by coarse resolution numerical models like global climate models (GCMs). Statistical downscaling models rely on several assumptions in order to produce finer-/local-scale projections of the variable of interest; one of these assumptions is the time-invariance of the relationships between predictors (e.g. coarse resolution GCM output) and the local-scale predictands (e.g. gridded observation-based time-series or weather station observations). However, in the absence of future observations, statistical downscaling studies use historical data to evaluate their models and assume that these historical simulation skills will be retained in the future. In addition, regression-based downscaling models fail to reproduce the observed variance, and hence their projections need to be adjusted accordingly. Two approaches are usually employed to perform this adjustment: randomization and variance inflation. Here, we study the effect of the stationarity assumption when downscaling daily maximum temperatures and using the downscaled information to estimate historical and future metrics like return periods and heat waves durations over Montreal, Canada; and the effect of the two variance adjustment techniques on the historical and future time-series. To do so, we used regional climate model (RCM) output from the Canadian RCM 4.2, as proxies of historical and future local climates, and daily maximum temperatures obtained from the Canadian GCM 3.1. The results show that the root-mean-squared errors between the pseudo-observations and the statistically downscaled time-series (historical and future) varied over time, with higher errors in the future period; and the effects of randomization and variance inflation on the tails of the statistically downscaled time-series.

Suggested Citation

  • Carlos F. Gaitán, 2016. "Effects of variance adjustment techniques and time-invariant transfer functions on heat wave duration indices and other metrics derived from downscaled time-series. Study case: Montreal, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1661-1681, September.
  • Handle: RePEc:spr:nathaz:v:83:y:2016:i:3:d:10.1007_s11069-016-2381-2
    DOI: 10.1007/s11069-016-2381-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2381-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2381-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keith W. Dixon & John R. Lanzante & Mary Jo Nath & Katharine Hayhoe & Anne Stoner & Aparna Radhakrishnan & V. Balaji & Carlos F. Gaitán, 2016. "Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results?," Climatic Change, Springer, vol. 135(3), pages 395-408, April.
    2. Kenneth J. Arrow & Anthony C. Fisher, 1974. "Environmental Preservation, Uncertainty, and Irreversibility," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 4, pages 76-84, Palgrave Macmillan.
    3. Mirhosseini, M. & Sharifi, F. & Sedaghat, A., 2011. "Assessing the wind energy potential locations in province of Semnan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 449-459, January.
    4. Gaitan, Carlos F. & Cannon, Alex J., 2013. "Validation of historical and future statistically downscaled pseudo-observed surface wind speeds in terms of annual climate indices and daily variability," Renewable Energy, Elsevier, vol. 51(C), pages 489-496.
    5. Vincent S. Saba & Charles A. Stock & James R. Spotila & Frank V. Paladino & Pilar Santidrián Tomillo, 2012. "Projected response of an endangered marine turtle population to climate change," Nature Climate Change, Nature, vol. 2(11), pages 814-820, November.
    6. Hallegatte, Stephane & Shah, Ankur & Lempert, Robert & Brown, Casey & Gill, Stuart, 2012. "Investment decision making under deep uncertainty -- application to climate change," Policy Research Working Paper Series 6193, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinent, Orencio Duran & Johnston, Robert J. & Kirwan, Matthew L. & Leroux, Anke D. & Martin, Vance L., 2019. "Coastal dynamics and adaptation to uncertain sea level rise: Optimal portfolios for salt marsh migration," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    2. Bonzanigo, Laura & Kalra, Nidhi, 2014. "Making informed investment decisions in an uncertain world : a short demonstration," Policy Research Working Paper Series 6765, The World Bank.
    3. Krutilla,Kerry Mace & Good,David Henning & Toman,Michael A. & Arin,Tijen, 2020. "Implementing Precaution in Benefit-Cost Analysis : The Case of Deep Seabed Mining," Policy Research Working Paper Series 9307, The World Bank.
    4. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    5. Wreford, Anita & Topp, Cairistiona F.E., 2020. "Impacts of climate change on livestock and possible adaptations: A case study of the United Kingdom," Agricultural Systems, Elsevier, vol. 178(C).
    6. Laure Cabantous & Olivier Chanel & Jean-Christophe Vergnaud, 2009. "Transport, Health and Climate Change: Deciding on the Optimal Policy," Economie Internationale, CEPII research center, issue 120, pages 11-36.
    7. Narain, Urvashi & Hanemann, W. Michael & Fisher, Anthony C., 2004. "The Temporal Resolution of Uncertainty and the Irreversibility Effect," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7nn328qg, Department of Agricultural & Resource Economics, UC Berkeley.
    8. Jackie Krafft & Isabelle Nicolaï, 1995. "Commitment Procedures In R&D Investments : An Examination Of Different Varieties," Post-Print hal-01799270, HAL.
    9. Arvind Magesan & Matthew A. Turner, 2008. "The Value of Information in Public Decisions," Working Papers tecipa-345, University of Toronto, Department of Economics.
    10. Michael Finus & Pedro Pintassilgo & Alistair Ulph, 2014. "International Environmental Agreements with Uncertainty, Learning and Risk Aversion," Department of Economics Working Papers 19/14, University of Bath, Department of Economics.
    11. Attanasi, Giuseppe Marco & Montesano, Aldo, 2010. "Testing Value vs Waiting Value in Environmental Decisions under Uncertainty," TSE Working Papers 10-154, Toulouse School of Economics (TSE).
    12. Nathalie Berta, 2016. "On the definition of externality as a missing market," Post-Print halshs-01277990, HAL.
    13. Narain, Urvashi & Hanemann, W. Michael & Fisher, Anthony C, 2007. "The irreversibility effect in environmental decisionmaking," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7bc5t8cf, Department of Agricultural & Resource Economics, UC Berkeley.
    14. Giovanni Immordino, 2005. "Uncertainty and the Cost of Reversal," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 30(2), pages 119-128, December.
    15. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    16. Erik Nelson & Virginia Matzek, 2016. "Carbon Credits Compete Poorly With Agricultural Commodities In An Optimized Model Of Land Use In Northern California," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-24, November.
    17. Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2022. "Policy instruments and self-reported impacts of the adoption of energy saving technologies in the DACH region," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 369-404, May.
    18. Gordon G. Sollars & Sorin Tuluca, 2012. "The Optimal Timing of Strategic Action – A Real Options Approach," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 8(2), pages 78-95.
    19. Hansen, Anders Chr., 2006. "Do declining discount rates lead to time inconsistent economic advice?," Ecological Economics, Elsevier, vol. 60(1), pages 138-144, November.
    20. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:83:y:2016:i:3:d:10.1007_s11069-016-2381-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.