IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v25yi5d10.1007_s11027-019-09899-w.html
   My bibliography  Save this article

Climate change risks and adaptation: new indicators for Mediterranean viticulture

Author

Listed:
  • D. Santillán

    (Universidad Politécnica de Madrid (UPM))

  • L. Garrote

    (Universidad Politécnica de Madrid (UPM))

  • A. Iglesias

    (Universidad Politécnica de Madrid (UPM))

  • V. Sotes

    (Universidad Politécnica de Madrid (UPM))

Abstract

The Mediterranean region, expanding across Southern Europe and North Africa, has developed agricultural systems over thousands of years and today is a major agricultural trade actor in the global market. At the same time, environmental and social equity differences in the region are pronounced, and this inequality is reflected in the production of traditional Mediterranean crops, such as grapevine (Vitis vinifera L.), a permanent wood crop, well adapted to the lack of water and recurrent drought in the region, and that has a role in the mitigation role of agriculture in arid environments. Increasing the ability to adapt to adverse impacts of climate change is an important task for Mediterranean agriculture. The indicators selected are widely used by practitioners in this grapevine production sector, linking science to the tools used by stakeholders and therefore encouraging action and innovation among all stakeholders. The novelty of the study is: the definition of adaptation needs based on a combination of indicators of production quantity and quality with a consistent set of climate scenarios; the evaluation of probabilistic changes with special emphasis on drought in a region that has very large climate variability; the definition of adaptation needs based on a consistent set of scenarios in an over 2 million km2; and the evaluation of potential adaptation choices that may contribute to real-time policy analysis and development as national and international policies and agreements in the grapevine production sector. The climate changes scenarios are derived from global datasets. Adaptation efforts are estimated proportionally to the change of the climatic indices and are categorized into low, medium, or high, as a function of the excepted changes in climatic indices. The study emphasizes that non-informed adaptation limits future choices in areas severely impacted.

Suggested Citation

  • D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 0. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899.
  • Handle: RePEc:spr:masfgc:v:25:y::i:5:d:10.1007_s11027-019-09899-w
    DOI: 10.1007/s11027-019-09899-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-019-09899-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-019-09899-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashenfelter, Orley & Storchmann, Karl, 2016. "Climate Change and Wine: A Review of the Economic Implications," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 105-138, May.
    2. Cecile M. Schultz, 2021. "The Future of HR," Chapters, in: Gonzalo Sanchez & Fernando Martin-Alcazar & Natalia Garcia-Carbonell (ed.), Beyond Human Resources - Research Paths Towards a New Understanding of Workforce Management Within Organizations, IntechOpen.
    3. Toshihiko Masui & Kenichi Matsumoto & Yasuaki Hijioka & Tsuguki Kinoshita & Toru Nozawa & Sawako Ishiwatari & Etsushi Kato & P. Shukla & Yoshiki Yamagata & Mikiko Kainuma, 2011. "An emission pathway for stabilization at 6 Wm −2 radiative forcing," Climatic Change, Springer, vol. 109(1), pages 59-76, November.
    4. James Ford & Diana King, 2015. "A framework for examining adaptation readiness," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 505-526, April.
    5. M. Moriondo & G. Jones & B. Bois & C. Dibari & R. Ferrise & G. Trombi & M. Bindi, 2013. "Projected shifts of wine regions in response to climate change," Climatic Change, Springer, vol. 119(3), pages 825-839, August.
    6. Ana Iglesias & Sonia Quiroga & Marta Moneo & Luis Garrote, 2012. "From climate change impacts to the development of adaptation strategies: Challenges for agriculture in Europe," Climatic Change, Springer, vol. 112(1), pages 143-168, May.
    7. van Leeuwen, Cornelis & Darriet, Philippe, 2016. "The Impact of Climate Change on Viticulture and Wine Quality," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 150-167, May.
    8. Ana Iglesias & David Santillán & Luis Garrote, 2018. "On the Barriers to Adaption to Less Water under Climate Change: Policy Choices in Mediterranean Countries," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4819-4832, December.
    9. Marco Moriondo & Marco Bindi & Zbigniew Kundzewicz & M. Szwed & A. Chorynski & P. Matczak & M. Radziejewski & D. McEvoy & Anita Wreford, 2010. "Impact and adaptation opportunities for European agriculture in response to climatic change and variability," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 657-679, October.
    10. Wolfgang Cramer & Joël Guiot & Marianela Fader & Joaquim Garrabou & Jean-Pierre Gattuso & Ana Iglesias & Manfred A. Lange & Piero Lionello & Maria Carmen Llasat & Shlomit Paz & Josep Peñuelas & Maria , 2018. "Climate change and interconnected risks to sustainable development in the Mediterranean," Nature Climate Change, Nature, vol. 8(11), pages 972-980, November.
    11. Robert Dixon & Joel Smith & Sandra Guill, 2003. "Life on the Edge: Vulnerability and Adaptation of African Ecosystems to Global Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(2), pages 93-113, June.
    12. Eithne Tynan, 2015. "Grapevines under stress," Nature Climate Change, Nature, vol. 5(8), pages 718-718, August.
    13. Etienne Neethling & Théo Petitjean & Hervé Quénol & Gérard Barbeau, 2017. "Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(5), pages 777-803, June.
    14. Benjamin I. Cook & Elizabeth M. Wolkovich, 2016. "Climate change decouples drought from early wine grape harvests in France," Nature Climate Change, Nature, vol. 6(7), pages 715-719, July.
    15. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    16. Gambetta, Gregory A., 2016. "Water Stress and Grape Physiology in the Context of Global Climate Change," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 168-180, May.
    17. Ferrise, Roberto & Trombi, Giacomo & Moriondo, Marco & Bindi, Marco, 2016. "Climate Change and Grapevines: A Simulation Study for the Mediterranean Basin," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 88-104, May.
    18. Luis Garrote & Ana Iglesias & Alfredo Granados & Luis Mediero & Francisco Martin-Carrasco, 2015. "Quantitative Assessment of Climate Change Vulnerability of Irrigation Demands in Mediterranean Europe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 325-338, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessia Cogato & Andrea Pezzuolo & Claus Grøn Sørensen & Roberta De Bei & Marco Sozzi & Francesco Marinello, 2020. "A GIS-Based Multicriteria Index to Evaluate the Mechanisability Potential of Italian Vineyard Area," Land, MDPI, vol. 9(11), pages 1-17, November.
    2. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Inês L. Cabral & Anabela Carneiro & Tiago Nogueira & Jorge Queiroz, 2021. "Regulated Deficit Irrigation and Its Effects on Yield and Quality of Vitis vinifera L., Touriga Francesa in a Hot Climate Area (Douro Region, Portugal)," Agriculture, MDPI, vol. 11(8), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    2. Naulleau, Audrey & Gary, Christian & Prévot, Laurent & Vinatier, Fabrice & Hossard, Laure, 2022. "How can winegrowers adapt to climate change? A participatory modeling approach in southern France," Agricultural Systems, Elsevier, vol. 203(C).
    3. Francisco J. Moral & Cristina Aguirado & Virginia Alberdi & Abelardo García-Martín & Luis L. Paniagua & Francisco J. Rebollo, 2022. "Future Scenarios for Viticultural Suitability under Conditions of Global Climate Change in Extremadura, Southwestern Spain," Agriculture, MDPI, vol. 12(11), pages 1-17, November.
    4. Omamuyovwi Gbejewoh & Saskia Keesstra & Erna Blancquaert, 2021. "The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    5. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    6. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    7. L. V. Noto & G. Cipolla & D. Pumo & A. Francipane, 2023. "Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2307-2323, May.
    8. Masia, Sara & Trabucco, Antonio & Spano, Donatella & Snyder, Richard L. & Sušnik, Janez & Marras, Serena, 2021. "A modelling platform for climate change impact on local and regional crop water requirements," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Aguilera, Eduardo & Díaz-Gaona, Cipriano & García-Laureano, Raquel & Reyes-Palomo, Carolina & Guzmán, Gloria I. & Ortolani, Livia & Sánchez-Rodríguez, Manuel & Rodríguez-Estévez, Vicente, 2020. "Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review," Agricultural Systems, Elsevier, vol. 181(C).
    10. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    11. Inês L. Cabral & Anabela Carneiro & Tiago Nogueira & Jorge Queiroz, 2021. "Regulated Deficit Irrigation and Its Effects on Yield and Quality of Vitis vinifera L., Touriga Francesa in a Hot Climate Area (Douro Region, Portugal)," Agriculture, MDPI, vol. 11(8), pages 1-16, August.
    12. Eduardo A. Haddad & Patricio Aroca, Pilar Jano, Ademir Rocha, Bruno Pimenta, 2019. "A Bad Year? Climate Variability and the Wine Industry in Chile," Working Papers, Department of Economics 2019_37, University of São Paulo (FEA-USP).
    13. Zajac, Zuzanna & Gomez, Oscar & Gelati, Emiliano & van der Velde, Marijn & Bassu, Simona & Ceglar, Andrej & Chukaliev, Ordan & Panarello, Lorenzo & Koeble, Renate & van den Berg, Maurits & Niemeyer, S, 2022. "Estimation of spatial distribution of irrigated crop areas in Europe for large-scale modelling applications," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Mi, Qiao & Li, Xiandong & Li, Xianmei & Yu, Guoxin & Gao, Jianzhong, 2021. "Cotton farmers' adaptation to arid climates: Waiting times to adopt water-saving technology," Agricultural Water Management, Elsevier, vol. 244(C).
    15. Wreford, Anita & Topp, Cairistiona F.E., 2020. "Impacts of climate change on livestock and possible adaptations: A case study of the United Kingdom," Agricultural Systems, Elsevier, vol. 178(C).
    16. Amogh Prakasha Kumar & Richard Watt & Laura Meriluoto, 2021. "New Evidence on Using Expert Ratings to Proxy for Wine Quality in Climate Change Research," Working Papers in Economics 21/10, University of Canterbury, Department of Economics and Finance.
    17. Teresa R. Freitas & João A. Santos & Ana P. Silva & Helder Fraga, 2023. "Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees ( Prunus dulcis )," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    18. Theodoros Markopoulos & Dimitra Stougiannidou & Stavros Kontakos & Christos Staboulis, 2023. "Wine Quality Control Parameters and Effects of Regional Climate Variation on Sustainable Production," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    19. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2019. "Performance of direct root-zone deficit irrigation on Vitis vinifera L. cv. Cabernet Sauvignon production and water use efficiency in semi-arid southcentral Washington," Agricultural Water Management, Elsevier, vol. 221(C), pages 47-57.
    20. Vega-Bayo, Ainhoa & Mariel, Petr & Meyerhoff, Jürgen & Corsi, Armando Maria & Chovan, Milan, 2023. "Climate change adaptation preferences of winemakers from the Rioja wine appellation," Journal of choice modelling, Elsevier, vol. 48(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:25:y::i:5:d:10.1007_s11027-019-09899-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.