IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i11p469-d449289.html
   My bibliography  Save this article

A GIS-Based Multicriteria Index to Evaluate the Mechanisability Potential of Italian Vineyard Area

Author

Listed:
  • Alessia Cogato

    (Department of Land, Environmental, Agriculture and Forestry, University of Padova, Via dell’Università 16, 35020 Legnaro (PD), Italy)

  • Andrea Pezzuolo

    (Department of Land, Environmental, Agriculture and Forestry, University of Padova, Via dell’Università 16, 35020 Legnaro (PD), Italy)

  • Claus Grøn Sørensen

    (Department of Engineering, Aarhus Universitet, 8200 Aarhus, Denmark)

  • Roberta De Bei

    (School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, Adelaide, SA 5064, Australia)

  • Marco Sozzi

    (Department of Land, Environmental, Agriculture and Forestry, University of Padova, Via dell’Università 16, 35020 Legnaro (PD), Italy)

  • Francesco Marinello

    (Department of Land, Environmental, Agriculture and Forestry, University of Padova, Via dell’Università 16, 35020 Legnaro (PD), Italy)

Abstract

Planting criteria of new vineyards should comply with rational and sustainable criteria, taking into account the potential mechanisability of existing viticultural areas. However, an established methodology for this assessment is still lacking. This study aimed at analysing the parameters which influence the vineyard mechanisability, with the objective to propose a new mechanisability index. The mechanisability index proposed was based on GIS-analysis of landscape and management parameters such as mean slope, shape of the vineyard block, length-width ratio, headland size, training system and row spacing. We identified a sample of 3686 vineyards in Italy. Based on the above-mentioned parameters, vineyards were categorised by their level of mechanisability ( l.m. ) into four classes. Moreover, we analysed the correlation between l.m. and economic indicators (area planted with vineyard and wine production). Results showed that the main factors limiting the mechanisability potential of some Italian regions are the elevated slopes, horizontal training systems and narrow vine spacings. The l.m. showed a moderate positive correlation with the size of vineyards and the volume and value of production. The methodology presented in this study may be easily applied to other viticultural areas around the world, serving as a management decision-making tool.

Suggested Citation

  • Alessia Cogato & Andrea Pezzuolo & Claus Grøn Sørensen & Roberta De Bei & Marco Sozzi & Francesco Marinello, 2020. "A GIS-Based Multicriteria Index to Evaluate the Mechanisability Potential of Italian Vineyard Area," Land, MDPI, vol. 9(11), pages 1-17, November.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:469-:d:449289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/11/469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/11/469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kristensen, Søren Bech Pilgaard & Busck, Anne Gravsholt & van der Sluis, Theo & Gaube, Veronika, 2016. "Patterns and drivers of farm-level land use change in selected European rural landscapes," Land Use Policy, Elsevier, vol. 57(C), pages 786-799.
    2. Ma, Li & Long, Hualou & Tu, Shuangshuang & Zhang, Yingnan & Zheng, Yuhan, 2020. "Farmland transition in China and its policy implications," Land Use Policy, Elsevier, vol. 92(C).
    3. Tatevik Yezekyan & Francesco Marinello & Giannantonio Armentano & Samuele Trestini & Luigi Sartori, 2018. "Definition of Reference Models for Power, Weight, Working Width, and Price for Seeding Machines," Agriculture, MDPI, vol. 8(12), pages 1-13, November.
    4. Jesús Barrena-González & Jesús Rodrigo-Comino & Yeboah Gyasi-Agyei & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates," Land, MDPI, vol. 9(3), pages 1-17, March.
    5. Priyadarshini, Priya & Abhilash, Purushothaman Chirakkuzhyil, 2020. "Policy recommendations for enabling transition towards sustainable agriculture in India," Land Use Policy, Elsevier, vol. 96(C).
    6. Elena Cervelli & Ester Scotto di Perta & Stefania Pindozzi, 2020. "Identification of Marginal Landscapes as Support for Sustainable Development: GIS-Based Analysis and Landscape Metrics Assessment in Southern Italy Areas," Sustainability, MDPI, vol. 12(13), pages 1-25, July.
    7. Valentina Cattivelli, 2020. "The Motivation of Urban Gardens in Mountain Areas. The Case of South Tyrol," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    8. S. Stanchi & D. Godone & S. Belmonte & M. Freppaz & C. Galliani & E. Zanini, 2013. "Land suitability map for mountain viticulture: a case study in Aosta Valley (NW Italy)," Journal of Maps, Taylor & Francis Journals, vol. 9(3), pages 367-372, September.
    9. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 0. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899.
    10. Sallustio, Lorenzo & Pettenella, Davide & Merlini, Paolo & Romano, Raoul & Salvati, Luca & Marchetti, Marco & Corona, Piermaria, 2018. "Assessing the economic marginality of agricultural lands in Italy to support land use planning," Land Use Policy, Elsevier, vol. 76(C), pages 526-534.
    11. Dina Statuto & Giuseppe Cillis & Pietro Picuno, 2017. "Using Historical Maps within a GIS to Analyze Two Centuries of Rural Landscape Changes in Southern Italy," Land, MDPI, vol. 6(3), pages 1-15, September.
    12. Basso, Matteo, 2019. "Land-use changes triggered by the expansion of wine-growing areas: A study on the Municipalities in the Prosecco’s production zone (Italy)," Land Use Policy, Elsevier, vol. 83(C), pages 390-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongbo Li & Lewei Chen & Zongyi Zhang, 2022. "A Study on the Utilization Rate and Influencing Factors of Small Agricultural Machinery: Evidence from 10 Hilly and Mountainous Provinces in China," Agriculture, MDPI, vol. 13(1), pages 1-25, December.
    2. Maria C. Cunha & Dalila Serpa & João Marques & Jan J. Keizer & Nelson Abrantes, 2023. "On sustainable improvements of agricultural practices in the Bairrada region (Portugal)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2735-2757, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Cillis & Dina Statuto & Pietro Picuno, 2021. "Historical GIS as a Tool for Monitoring, Preserving and Planning Forest Landscape: A Case Study in a Mediterranean Region," Land, MDPI, vol. 10(8), pages 1-20, August.
    2. Marek Helis & Maria Strzelczyk & Wojciech Golimowski & Aleksandra Steinhoff-Wrześniewska & Anna Paszkiewicz-Jasińska & Małgorzata Hawrot-Paw & Adam Koniuszy & Marek Hryniewicz, 2021. "Biomass Potential of the Marginal Land of the Polish Sudetes Mountain Range," Energies, MDPI, vol. 14(21), pages 1-16, November.
    3. Shambu Prasad Chebrolu & Deborah Dutta, 2021. "Managing Sustainable Transitions: Institutional Innovations from India," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    4. Liangliang Zhou & Yishao Shi & Xiangyang Cao, 2019. "Evaluation of Land Intensive Use in Shanghai Pilot Free Trade Zone," Land, MDPI, vol. 8(6), pages 1-16, May.
    5. Salvatore Di Fazio & Giuseppe Modica, 2018. "Historic Rural Landscapes: Sustainable Planning Strategies and Action Criteria. The Italian Experience in the Global and European Context," Sustainability, MDPI, vol. 10(11), pages 1-27, October.
    6. Tatevik Yezekyan & Marco Benetti & Giannantonio Armentano & Samuele Trestini & Luigi Sartori & Francesco Marinello, 2021. "Definition of Reference Models for Power, Mass, Working Width, and Price for Tillage Implements," Agriculture, MDPI, vol. 11(3), pages 1-15, February.
    7. Marco Savastano & Altaf Hussain Samo & Nisar Ahmed Channa & Carlo Amendola, 2022. "Toward a Conceptual Framework to Foster Green Entrepreneurship Growth in the Agriculture Industry," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    8. Pacheco de Castro Flores Ribeiro, Paulo & Osório de Barros de Lima e Santos, José Manuel & Prudêncio Rafael Canadas, Maria João & Contente de Vinha Novais, Ana Maria & Ribeiro Ferraria Moreira, Franci, 2021. "Explaining farming systems spatial patterns: A farm-level choice model based on socioeconomic and biophysical drivers," Agricultural Systems, Elsevier, vol. 191(C).
    9. Jinping Lin & Meiqi Zhou & Huasong Luo & Bowen Zhang & Jiajia Feng & Qi Yi, 2022. "Analysis of the Emotional Identification Mechanism of Campus Edible Landscape from the Perspective of Emotional Geography: An Empirical Study of a Chinese University Town," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    10. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    11. Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
    12. Katarzyna Kocur-Bera & Anna Lyjak, 2021. "Analysis of Changes in Agricultural Use of Land After Poland’s Accession to the EU," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 517-533.
    13. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    14. Ilaria Zambon & Artemi Cerdà & Sirio Cividino & Luca Salvati, 2019. "The (Evolving) Vineyard’s Age Structure in the Valencian Community, Spain: A New Demographic Approach for Rural Development and Landscape Analysis," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    15. Cameira, M.R. & Rolim, João & Valente, Fernanda & Faro, Afonso & Dragosits, Ulrike & Cordovil, Cláudia M.d.S., 2019. "Spatial distribution and uncertainties of nitrogen budgets for agriculture in the Tagus river basin in Portugal – Implications for effectiveness of mitigation measures," Land Use Policy, Elsevier, vol. 84(C), pages 278-293.
    16. Ligang Lyu & Zhoubing Gao & Hualou Long & Xiaorui Wang & Yeting Fan, 2021. "Farmland Use Transition in a Typical Farming Area: The Case of Sihong County in the Huang-Huai-Hai Plain of China," Land, MDPI, vol. 10(4), pages 1-16, March.
    17. Kyung Wook Seo & Sugie Lee, 2019. "Oxcart Route in the City: Tracking the Urbanization Process of an Agricultural Village in Korea," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    18. Kristensen, Søren Bech Pilgaard & Præstholm, Søren & Busck, Anne Gravsholt & Winther, Lars & Fertner, Christian & Vesterager, Jens Peter & Vejre, Henrik, 2019. "On-farm Business Structure Diversification in Greater Copenhagen—Farmers in an urban landscape or entrepreneurs in a rural landscape?," Land Use Policy, Elsevier, vol. 88(C).
    19. Rohit Agrawal & Abhijit Majumdar & Kirty Majumdar & Rakesh D. Raut & Balkrishna E. Narkhede, 2022. "Attaining sustainable development goals (SDGs) through supply chain practices and business strategies: A systematic review with bibliometric and network analyses," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3669-3687, November.
    20. Junna Liu & Siyan Zeng & Jing Ma & Yuanyuan Chang & Yan Sun & Fu Chen, 2022. "The Impacts of Rapid Urbanization on Farmland Marginalization: A Case Study of the Yangtze River Delta, China," Agriculture, MDPI, vol. 12(8), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:469-:d:449289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.