IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v18y2013i1p159-167.html
   My bibliography  Save this article

Hybrid microalgal biofuel, desalination, and solution mining systems: increased industrial waste energy, carbon, and water use efficiencies

Author

Listed:
  • Mark McHenry

Abstract

This work reviews retrofitting new waste energy, carbon and water intensive technologies into existing industrial facilities (including electricity generators) to increase net energy, carbon, and water use efficiencies. The three applications reviewed are microalgal ponds consuming flue gasses and providing thermal power station cooling services, thermally driven membrane distillation desalination, and hydrometallurgical solution mining processes to indirectly remove water contaminants, and additional power station cooling. The aim of this work is to explore the unique challenge of site-specificity of retrofitting any or all of the reviewed technologies within existing facilities for commercial operations. The theoretical basis behind higher aggregated efficiencies is essentially vertical integration of infrastructure, energy, and material flows, reducing total costs, net waste, and associated potential environmental contamination. Whilst solution mining and some thermal desalination technologies are not necessarily new in isolation, new technical developments enable these technologies to use waste heat and waste water by operating in parallel with industrial facilities, and effectively subsidise microalgae biofuel water pumping and dewatering. This research determines three fundamental developments are required to enable wide-scale industrial co-located vertical integration efficiencies: (1) fundamental engineering, (2) monitoring system innovation, and (3) technology/knowledge transfer. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Mark McHenry, 2013. "Hybrid microalgal biofuel, desalination, and solution mining systems: increased industrial waste energy, carbon, and water use efficiencies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 159-167, January.
  • Handle: RePEc:spr:masfgc:v:18:y:2013:i:1:p:159-167
    DOI: 10.1007/s11027-012-9361-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-012-9361-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-012-9361-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McHenry, Mark P. & Doepel, David, 2015. "The ‘low power’ revolution: Rural off-grid consumer technologies and portable micropower systems in non-industrialised regions," Renewable Energy, Elsevier, vol. 78(C), pages 679-684.
    2. McHenry, Mark P., 2013. "Technical and governance considerations for advanced metering infrastructure/smart meters: Technology, security, uncertainty, costs, benefits, and risks," Energy Policy, Elsevier, vol. 59(C), pages 834-842.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    2. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    3. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    4. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    5. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    6. Garzozi, A. & Greenblatt, D., 2022. "Exploiting the Coandă effect for wind-driven reciprocating RO desalination," Energy, Elsevier, vol. 238(PC).
    7. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    8. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    9. Zejli, Driss & Ouammi, Ahmed & Sacile, Roberto & Dagdougui, Hanane & Elmidaoui, Azzeddine, 2011. "An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system," Applied Energy, Elsevier, vol. 88(11), pages 4042-4054.
    10. Ray, Manojit & Chakraborty, Basab, 2021. "Impact of demand response on escalating energy access with affordable solar photovoltaic generation in the Global South," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Hatti, M. & Meharrar, A. & Tioursi, M., 2011. "Power management strategy in the alternative energy photovoltaic/PEM Fuel Cell hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5104-5110.
    12. Touati, Khaled & Tadeo, Fernando & Elfil, Hamza, 2017. "Osmotic energy recovery from Reverse Osmosis using two-stage Pressure Retarded Osmosis," Energy, Elsevier, vol. 132(C), pages 213-224.
    13. Pinto, F. Silva & Marques, R. Cunha, 2017. "Desalination projects economic feasibility: A standardization of cost determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 904-915.
    14. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    15. Ben Ali, I. & Turki, M. & Belhadj, J. & Roboam, X., 2018. "Optimized fuzzy rule-based energy management for a battery-less PV/wind-BWRO desalination system," Energy, Elsevier, vol. 159(C), pages 216-228.
    16. Clarke, Daniel P. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2015. "Multi-objective optimisation of renewable hybrid energy systems with desalination," Energy, Elsevier, vol. 88(C), pages 457-468.
    17. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
    18. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    19. Ylänen, Markus M.M. & Lampinen, Markku J., 2014. "Determining optimal operating pressure for AaltoRO – A novel wave powered desalination system," Renewable Energy, Elsevier, vol. 69(C), pages 386-392.
    20. Gil Azinheira & Raquel Segurado & Mário Costa, 2019. "Is Renewable Energy-Powered Desalination a Viable Solution for Water Stressed Regions? A Case Study in Algarve, Portugal," Energies, MDPI, vol. 12(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:18:y:2013:i:1:p:159-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.