IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp216-228.html
   My bibliography  Save this article

Optimized fuzzy rule-based energy management for a battery-less PV/wind-BWRO desalination system

Author

Listed:
  • Ben Ali, I.
  • Turki, M.
  • Belhadj, J.
  • Roboam, X.

Abstract

Coupling water desalination processes with Renewable Energy Sources (RESs) can be a sustainable and ecological approach to the global water/energy supply crisis. In this regard, small-scale standalone battery-less Brackish Water Reverse Osmosis (BWRO) desalination system powered by a hybrid PV/Wind RES is expected to meet freshwater demand of a small isolated community. One particularity of the proposed architecture deals with the absence of electrochemical storage; only taking benefit of hydraulic storage in water tanks when RE is available. This study puts forward the prime importance of Water/Power flows management optimization. For this purpose, an online Fuzzy Logic-based Energy Management Strategy (FLEMS) is proposed. Firstly, a Hand-Made Fuzzy Inference System (HMFIS) was designed to identify the instantaneous power sharing between the system hydro-mechanical processes (well pumping, water storage and desalination processes). Secondly, an offline genetic algorithm optimization was applied on the HMFIS design in order to optimize the power sharing factor and maximize freshwater production. Then, when applying unknown power profile, the optimized FLEMS demonstrated its performance to improve the system energy efficiency and enhance the brackish water (from 16.7% in autumn to 63% in summer) and freshwater production (to 3.3% during autumn for instance) compared with the HMFIS-based EMS.

Suggested Citation

  • Ben Ali, I. & Turki, M. & Belhadj, J. & Roboam, X., 2018. "Optimized fuzzy rule-based energy management for a battery-less PV/wind-BWRO desalination system," Energy, Elsevier, vol. 159(C), pages 216-228.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:216-228
    DOI: 10.1016/j.energy.2018.06.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kyriakarakos, George & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2012. "A fuzzy logic energy management system for polygeneration microgrids," Renewable Energy, Elsevier, vol. 41(C), pages 315-327.
    2. Al-Nory, Malak & El-Beltagy, Mohamed, 2014. "An energy management approach for renewable energy integration with power generation and water desalination," Renewable Energy, Elsevier, vol. 72(C), pages 377-385.
    3. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    4. Thiam, Djiby-Racine, 2010. "Renewable decentralized in developing countries: Appraisal from microgrids project in Senegal," Renewable Energy, Elsevier, vol. 35(8), pages 1615-1623.
    5. Farhat, Maissa & Barambones, Oscar & Sbita, Lassaâd, 2015. "Efficiency optimization of a DSP-based standalone PV system using a stable single input fuzzy logic controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 907-920.
    6. Ranaboldo, Matteo & Lega, Bruno Domenech & Ferrenbach, David Vilar & Ferrer-Martí, Laia & Moreno, Rafael Pastor & García-Villoria, Alberto, 2014. "Renewable energy projects to electrify rural communities in Cape Verde," Applied Energy, Elsevier, vol. 118(C), pages 280-291.
    7. Kyriakarakos, George & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2017. "Design of a Fuzzy Cognitive Maps variable-load energy management system for autonomous PV-reverse osmosis desalination systems: A simulation survey," Applied Energy, Elsevier, vol. 187(C), pages 575-584.
    8. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batista, Natasha E. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M. & Braga, Arthur P.S., 2023. "Optimizing methodologies of hybrid renewable energy systems powered reverse osmosis plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Jafari, Mohammad & Malekjamshidi, Zahra, 2020. "Optimal energy management of a residential-based hybrid renewable energy system using rule-based real-time control and 2D dynamic programming optimization method," Renewable Energy, Elsevier, vol. 146(C), pages 254-266.
    3. Wu, Wei & Luo, Junlin & Zou, Tiangang & Liu, Yin & Yuan, Shihua & Xiao, Bingqing, 2022. "Systematic design and power management of a novel parallel hybrid electric powertrain for heavy-duty vehicles," Energy, Elsevier, vol. 253(C).
    4. Ayman Al-Quraan & Muhannad Al-Qaisi, 2021. "Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System," Energies, MDPI, vol. 14(16), pages 1-23, August.
    5. El-Baz, Wessam & Tzscheutschler, Peter & Wagner, Ulrich, 2019. "Integration of energy markets in microgrids: A double-sided auction with device-oriented bidding strategies," Applied Energy, Elsevier, vol. 241(C), pages 625-639.
    6. Ioannis Karakitsios & Aris Dimeas & Nikos Hatziargyriou, 2020. "Optimal Management of the Desalination System Demand in Non-Interconnected Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    7. Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.
    8. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada, 2021. "Deep learning-based energy management of a hybrid photovoltaic-reverse osmosis-pressure retarded osmosis system," Applied Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    2. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    3. Mentis, Dimitrios & Karalis, George & Zervos, Arthouros & Howells, Mark & Taliotis, Constantinos & Bazilian, Morgan & Rogner, Holger, 2016. "Desalination using renewable energy sources on the arid islands of South Aegean Sea," Energy, Elsevier, vol. 94(C), pages 262-272.
    4. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    5. Schäfer, Andrea I. & Hughes, Gordon & Richards, Bryce S., 2014. "Renewable energy powered membrane technology: A leapfrog approach to rural water treatment in developing countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 542-556.
    6. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada, 2021. "Deep learning-based energy management of a hybrid photovoltaic-reverse osmosis-pressure retarded osmosis system," Applied Energy, Elsevier, vol. 293(C).
    8. Kyriakarakos, George & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2017. "Design of a Fuzzy Cognitive Maps variable-load energy management system for autonomous PV-reverse osmosis desalination systems: A simulation survey," Applied Energy, Elsevier, vol. 187(C), pages 575-584.
    9. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "A key review on present status and future directions of solar energy studies and applications in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5021-5050.
    10. Alessandro Corsini & Eileen Tortora, 2018. "Sea-Water Desalination for Load Levelling of Gen-Sets in Small Off-Grid Islands," Energies, MDPI, vol. 11(8), pages 1-18, August.
    11. Domenech, B. & Ranaboldo, M. & Ferrer-Martí, L. & Pastor, R. & Flynn, D., 2018. "Local and regional microgrid models to optimise the design of isolated electrification projects," Renewable Energy, Elsevier, vol. 119(C), pages 795-808.
    12. Pinto, F. Silva & Marques, R. Cunha, 2017. "Desalination projects economic feasibility: A standardization of cost determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 904-915.
    13. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    14. Ariana M. Pietrasanta & Mostafa F. Shaaban & Pio A. Aguirre & Sergio F. Mussati & Mohamed A. Hamouda, 2023. "Simulation and Optimization of Renewable Energy-Powered Desalination: A Bibliometric Analysis and Highlights of Recent Research," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    15. Carta, José A. & González, Jaime & Cabrera, Pedro & Subiela, Vicente J., 2015. "Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alon," Applied Energy, Elsevier, vol. 137(C), pages 222-239.
    16. Christos-Spyridon Karavas & Konstantinos Arvanitis & George Papadakis, 2017. "A Game Theory Approach to Multi-Agent Decentralized Energy Management of Autonomous Polygeneration Microgrids," Energies, MDPI, vol. 10(11), pages 1-22, November.
    17. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    18. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    19. Fernandez-Gonzalez, C. & Dominguez-Ramos, A. & Ibañez, R. & Irabien, A., 2015. "Sustainability assessment of electrodialysis powered by photovoltaic solar energy for freshwater production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 604-615.
    20. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:216-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.