IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v253y2022ics0360544222010684.html
   My bibliography  Save this article

Systematic design and power management of a novel parallel hybrid electric powertrain for heavy-duty vehicles

Author

Listed:
  • Wu, Wei
  • Luo, Junlin
  • Zou, Tiangang
  • Liu, Yin
  • Yuan, Shihua
  • Xiao, Bingqing

Abstract

A novel multi-degree-of-freedom parallel hybrid propulsion system with multi-gear for heavy-duty vehicles is proposed to optimize fuel economy, driving comfort, and dynamic performance. The system has a compact structure and high integration. The detailed design and the power flow of the parallel hybrid propulsion system are introduced. The full power system prototype is designed and assembled. The control methods for the driving torque compensation and energy management are investigated. The simulated results of the parallel hybrid propulsion system are presented. The propulsion system power is not interrupted during gear shifting with the torque compensation control. The jerk of the vehicle is also reduced during shifting. The internal combustion engine can work more efficiently in the hybrid propulsion mode with the equivalent consumption minimization strategy. The purpose of this paper is to provide a hybrid driving scheme for commercial vehicles.

Suggested Citation

  • Wu, Wei & Luo, Junlin & Zou, Tiangang & Liu, Yin & Yuan, Shihua & Xiao, Bingqing, 2022. "Systematic design and power management of a novel parallel hybrid electric powertrain for heavy-duty vehicles," Energy, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010684
    DOI: 10.1016/j.energy.2022.124165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222010684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castaings, Ali & Lhomme, Walter & Trigui, Rochdi & Bouscayrol, Alain, 2016. "Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints," Applied Energy, Elsevier, vol. 163(C), pages 190-200.
    2. Girade, Piyush & Shah, Harsh & Kaushik, Karan & Patheria, Akil & Xu, Bin, 2021. "Comparative analysis of state of charge based adaptive supervisory control strategies of plug-in Hybrid Electric Vehicles," Energy, Elsevier, vol. 230(C).
    3. Guo, Hongqiang & Sun, Qun & Wang, Chong & Wang, Qinpu & Lu, Silong, 2018. "A systematic design and optimization method of transmission system and power management for a plug-in hybrid electric vehicle," Energy, Elsevier, vol. 148(C), pages 1006-1017.
    4. Wei, Changyin & Sun, Xiuxiu & Chen, Yong & Zang, Libin & Bai, Shujie, 2021. "Comparison of architecture and adaptive energy management strategy for plug-in hybrid electric logistics vehicle," Energy, Elsevier, vol. 230(C).
    5. Hu, Xiaosong & Johannesson, Lars & Murgovski, Nikolce & Egardt, Bo, 2015. "Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus," Applied Energy, Elsevier, vol. 137(C), pages 913-924.
    6. Pei, Huanxin & Hu, Xiaosong & Yang, Yalian & Tang, Xiaolin & Hou, Cong & Cao, Dongpu, 2018. "Configuration optimization for improving fuel efficiency of power split hybrid powertrains with a single planetary gear," Applied Energy, Elsevier, vol. 214(C), pages 103-116.
    7. Zhuang, Weichao & Zhang, Xiaowu & Ding, Yang & Wang, Liangmo & Hu, Xiaosong, 2016. "Comparison of multi-mode hybrid powertrains with multiple planetary gears," Applied Energy, Elsevier, vol. 178(C), pages 624-632.
    8. Ben Ali, I. & Turki, M. & Belhadj, J. & Roboam, X., 2018. "Optimized fuzzy rule-based energy management for a battery-less PV/wind-BWRO desalination system," Energy, Elsevier, vol. 159(C), pages 216-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilberforce, Tabbi & Anser, Afaaq & Swamy, Jangam Aishwarya & Opoku, Richard, 2023. "An investigation into hybrid energy storage system control and power distribution for hybrid electric vehicles," Energy, Elsevier, vol. 279(C).
    2. Chen, Shuang & Hu, Minghui & Lei, Yanlei & Kong, Linghao, 2023. "Novel hybrid power system and energy management strategy for locomotives," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    2. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    3. Wenjian Yang & Changping Li, 2022. "Symmetry Detection and Topological Synthesis of Mechanisms of Powertrains," Energies, MDPI, vol. 15(13), pages 1-22, June.
    4. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    5. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    6. Wenjian Yang & Yongtao Li & Rongjiang Cui & Hongmei Kang, 2023. "A New Tree Graph Method for Synthesizing Planetary Gear Trains of Vehicle Powertrains," Energies, MDPI, vol. 16(20), pages 1-27, October.
    7. Ba Hung, Nguyen & Jaewon, Sung & Lim, Ocktaeck, 2017. "A study of the effects of input parameters on the dynamics and required power of an electric bicycle," Applied Energy, Elsevier, vol. 204(C), pages 1347-1362.
    8. Wieczorek, Maciej & Lewandowski, Mirosław, 2017. "A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm," Applied Energy, Elsevier, vol. 192(C), pages 222-233.
    9. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    10. Mayet, C. & Welles, J. & Bouscayrol, A. & Hofman, T. & Lemaire-Semail, B., 2019. "Influence of a CVT on the fuel consumption of a parallel medium-duty electric hybrid truck," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 120-129.
    11. Wang, Hong & Huang, Yanjun & Khajepour, Amir & Song, Qiang, 2016. "Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 182(C), pages 105-114.
    12. Anselma, Pier Giuseppe, 2022. "Electrified powertrain sizing for vehicle fleets of car makers considering total ownership costs and CO2 emission legislation scenarios," Applied Energy, Elsevier, vol. 314(C).
    13. Zhuang, Weichao & Ye, Jianwei & Song, Ziyou & Yin, Guodong & Li, Guangmin, 2020. "Comparison of semi-active hybrid battery system configurations for electric taxis application," Applied Energy, Elsevier, vol. 259(C).
    14. Xiaodong Liu & Hongqiang Guo & Xingqun Cheng & Juan Du & Jian Ma, 2022. "A Robust Design of the Model-Free-Adaptive-Control-Based Energy Management for Plug-In Hybrid Electric Vehicle," Energies, MDPI, vol. 15(20), pages 1-24, October.
    15. Yu, Wei & Wang, Ruochen, 2019. "Development and performance evaluation of a comprehensive automotive energy recovery system with a refined energy management strategy," Energy, Elsevier, vol. 189(C).
    16. Aroua, Ayoub & Lhomme, Walter & Redondo-Iglesias, Eduardo & Verbelen, Florian, 2022. "Fuel saving potential of a long haul heavy duty vehicle equipped with an electrical variable transmission," Applied Energy, Elsevier, vol. 307(C).
    17. Trovão, João P. & Silva, Mário A. & Antunes, Carlos Henggeler & Dubois, Maxime R., 2017. "Stability enhancement of the motor drive DC input voltage of an electric vehicle using on-board hybrid energy storage systems," Applied Energy, Elsevier, vol. 205(C), pages 244-259.
    18. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    19. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    20. Mpho J. Lencwe & Shyama P. Chowdhury & Thomas O. Olwal, 2018. "A Multi-Stage Approach to a Hybrid Lead Acid Battery and Supercapacitor System for Transport Vehicles," Energies, MDPI, vol. 11(11), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.