IDEAS home Printed from https://ideas.repec.org/a/spr/lsprsc/v9y2016i3d10.1007_s12076-015-0164-0.html
   My bibliography  Save this article

Spatial-temporal heteroskedastic robust covariance estimation for Markov transition probabilities: an application examining land use change

Author

Listed:
  • D. M. Lambert

    (The University of Tennessee)

  • C. N. Boyer

    (The University of Tennessee)

  • L. He

    (The University of Tennessee)

Abstract

A spatial-temporal autocorrelation consistent covariance matrix is suggested for estimating the standard errors of a first-order Markov process model depicting aggregate land use dynamics. Particular attention is given to covariance estimation robust to temporal and spatial dependence. An empirical example compares the adjusted covariance estimators by examining cropland dynamics, revenue, and the corresponding own-price area supply elasticities with a Monte Carlo analysis. The relative precision of own-price elasticities increased in most cases, suggesting gains in efficiency when the covariance estimator of transition probabilities is adjusted for temporal and spatial dependence and cross-equation correlation. In this example, adjusting for temporal-spatial dependence moderates the absolute magnitude of elasticity point estimates. The approaches suggested in this letter will be of interest to researchers modeling land use transitions with aggregate data.

Suggested Citation

  • D. M. Lambert & C. N. Boyer & L. He, 2016. "Spatial-temporal heteroskedastic robust covariance estimation for Markov transition probabilities: an application examining land use change," Letters in Spatial and Resource Sciences, Springer, vol. 9(3), pages 353-362, October.
  • Handle: RePEc:spr:lsprsc:v:9:y:2016:i:3:d:10.1007_s12076-015-0164-0
    DOI: 10.1007/s12076-015-0164-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12076-015-0164-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12076-015-0164-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raja Chakir & Olivier Parent, 2009. "Determinants of land use changes: A spatial multinomial probit approach," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
    2. Torre Ugarte, Daniel de la & Sanford, Scott & Skinner, Robert A. & Westcott, Paul C. & Lin, William W., 2000. "Supply Response Under The 1996 Farm Act And Implications For The U.S. Field Crops Sector," Technical Bulletins 33568, United States Department of Agriculture, Economic Research Service.
    3. Ruben N. Lubowski & Andrew J. Plantinga & Robert N. Stavins, 2008. "What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions," Land Economics, University of Wisconsin Press, vol. 84(4), pages 529-550.
    4. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    5. Douglas J. Miller & Andrew J. Plantinga, 1999. "Modeling Land Use Decisions with Aggregate Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 180-194.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    7. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    8. MacRae, Elizabeth Chase, 1977. "Estimation of Time-Varying Markov Processes with Aggregate Data," Econometrica, Econometric Society, vol. 45(1), pages 183-198, January.
    9. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    10. JunJie Wu & Kathleen Segerson, 1995. "The Impact of Policies and Land Characteristics on Potential Groundwater Pollution in Wisconsin," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(4), pages 1033-1047.
    11. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    12. Lixia He & Theodore M. Horbulyk, 2010. "Market‐Based Policy Instruments, Irrigation Water Demand, and Crop Diversification in the Bow River Basin of Southern Alberta," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(2), pages 191-213, June.
    13. Plantinga, Andrew J. & Ahn, Soeun, 2002. "Efficient Policies For Environmental Protection: An Econometric Analysis Of Incentives For Land Conversion And Retention," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-18, July.
    14. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    15. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    16. Mekbib G. Haile & Matthias Kalkuhl & Joachim Braun, 2014. "Inter- and intra-seasonal crop acreage response to international food prices and implications of volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 693-710, November.
    17. Medellín-Azuara, J. & Howitt, R.E. & Harou, J.J., 2012. "Predicting farmer responses to water pricing, rationing and subsidies assuming profit maximizing investment in irrigation technology," Agricultural Water Management, Elsevier, vol. 108(C), pages 73-82.
    18. Miller, Douglas & Plantinga, Andrew J., 1999. "Modeling Land Use Decisions with Aggregate Data," Staff General Research Papers Archive 1487, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dayton M. Lambert, 2020. "Dynamic panel estimation of a regional adjustment model with spatial-temporal robust covariance," Letters in Spatial and Resource Sciences, Springer, vol. 13(3), pages 245-265, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    2. Jean-Sauveur Ay & Raja Chakir & Julie Le Gallo, 2014. "The effects of scale, space and time on the predictive accuracy of land use models," Working Papers 2014/02, INRA, Economie Publique.
    3. Chakir, Raja & Lungarska, Anna, 2015. "Agricultural land rents in land use models: a spatial econometric analysis," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212641, European Association of Agricultural Economists.
    4. Chakir, Raja & Le Gallo, Julie, 2013. "Predicting land use allocation in France: A spatial panel data analysis," Ecological Economics, Elsevier, vol. 92(C), pages 114-125.
    5. Maples, Chellie H. & Hagerman, Amy D. & Lambert, Dayton M., 2022. "Ex-ante effects of the 2018 Agricultural Improvement Act’s grassland initiative," Land Use Policy, Elsevier, vol. 116(C).
    6. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    7. Alain Carpentier & Elodie Letort, 2014. "Multicrop Production Models with Multinomial Logit Acreage Shares," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 537-559, December.
    8. Claassen, Roger & Carriazo, Fernando & Cooper, Joseph C. & Hellerstein, Daniel & Ueda, Kohei, 2011. "Grassland to Cropland Conversion in the Northern Plains: The Role of Crop Insurance, Commodity, and Disaster Programs," Economic Research Report 262239, United States Department of Agriculture, Economic Research Service.
    9. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    10. Hendricks, Nathan P. & Janzen, Joseph P. & Smith, Aaron, 2013. "Futures Prices in Supply Analysis Reconsidered," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150696, Agricultural and Applied Economics Association.
    11. Kan, Iddo & Kimhi, Ayal & Kaminski, Jonathan, 2015. "Micro-Macro Impacts of Climate-Change on Agriculture and Food Markets," 2015 Conference, August 9-14, 2015, Milan, Italy 211828, International Association of Agricultural Economists.
    12. Kan, Iddo & Kimhi, Ayal & Kaminski, Jonathan, 2015. "Climate-Change Impacts on Agriculture and Food Markets: Combining a Micro-Level Structural Land-Use Model and a Market-Level Equilibrium Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205128, Agricultural and Applied Economics Association.
    13. Sandler, Austin M. & Rashford, Benjamin S., 2018. "Misclassification error in satellite imagery data: Implications for empirical land-use models," Land Use Policy, Elsevier, vol. 75(C), pages 530-537.
    14. Kimhi, A., 2018. "Integrated Micro-Macro Structural Econometric Framework for Assessing Climate-Change Impacts on Agricultural Production and Food Markets," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276972, International Association of Agricultural Economists.
    15. Kan, Iddo & Kimhi, Ayal & Kaminski, Jonathan, 2014. "The impact of climate change on agriculture and food prices: combining a micro land use model and a market equilibrium model," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 183024, European Association of Agricultural Economists.
    16. KURKALOVA, Lyubov A. & WADE, Tara R., 2013. "Aggregated Choice Data And Logit Models: Application To Environmental Benign Practices Of Conservation Tillage By Farmers In The State Of Iowa," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 13(2), pages 119-128.
    17. Carpentier, Alain & Letort, Elodie, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers 211011, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    18. Hyunseok Kim & GianCarlo Moschini, 2018. "The Dynamics of Supply: U.S. Corn and Soybeans in the Biofuel Era," Land Economics, University of Wisconsin Press, vol. 94(4), pages 593-613.
    19. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
    20. Chonabayashi, Shun, 2014. "Accounting for Land Use Adaptation to Climate Change Impacts on US Agriculture," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170710, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Transition probabilities; Land use; Elasticities; Spatial-temporal covariance; Multinomial logit;
    All these keywords.

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lsprsc:v:9:y:2016:i:3:d:10.1007_s12076-015-0164-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.