IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v24y2018i1d10.1007_s10732-017-9357-6.html
   My bibliography  Save this article

Hybrid approaches to optimize mixed-model assembly lines in low-volume manufacturing

Author

Listed:
  • Alexander Biele

    (ZAL TechCenter AIRBUS Group Innovations
    University of Hagen)

  • Lars Mönch

    (University of Hagen)

Abstract

In this paper, a production planning problem for mixed-model assembly lines in low-volume manufacturing as can be found in aircraft manufacturing is considered. This type of manufacturing is labor-intensive. Low-volume production of huge-sized jobs, i.e. airplanes, is typical. Balancing labor costs and inventory holding costs assuming a given job sequence is the purpose of this paper. Therefore, worker assignments to each station and start times and processing times for each job on each station are determined. Two different mathematical models are proposed. The first formulation is a time-indexed linear formulation that allows for a flexible allocation of workers to periods and stations while the second one has a non-linear objective function and allows only for a fixed assignment of workers to stations. It is proven that the second formulation leads to a linear program with continuous decision variables if the values of the decision variables that determine the number of workers assigned to a station are given, while the first formulation contains even in this situation binary decision variables. Heuristics that hybridize the mathematical formulations with variable neighborhood search techniques are proposed. Computational experiments on randomly generated problem instances and on real-world instances demonstrate the high performance of the heuristics.

Suggested Citation

  • Alexander Biele & Lars Mönch, 2018. "Hybrid approaches to optimize mixed-model assembly lines in low-volume manufacturing," Journal of Heuristics, Springer, vol. 24(1), pages 49-81, February.
  • Handle: RePEc:spr:joheur:v:24:y:2018:i:1:d:10.1007_s10732-017-9357-6
    DOI: 10.1007/s10732-017-9357-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-017-9357-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-017-9357-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heike, G. & Ramulu, M. & Sorenson, E. & Shanahan, P. & Moinzadeh, K., 2001. "Mixed model assembly alternatives for low-volume manufacturing: The case of the aerospace industry," International Journal of Production Economics, Elsevier, vol. 72(2), pages 103-120, July.
    2. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    3. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    4. C.D. Rose & J.M.G. Coenen, 2016. "Automatic generation of a section building planning for constructing complex ships in European shipyards," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6848-6859, November.
    5. Olcay Polat & Can B. Kalayci & Özcan Mutlu & Surendra M. Gupta, 2016. "A two-phase variable neighbourhood search algorithm for assembly line worker assignment and balancing problem type-II: an industrial case study," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 722-741, February.
    6. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    7. Campbell, Gerard M. & Diaby, Moustapha, 2002. "Development and evaluation of an assignment heuristic for allocating cross-trained workers," European Journal of Operational Research, Elsevier, vol. 138(1), pages 9-20, April.
    8. Stefan Voß & David L. Woodruff, 2006. "Introduction to Computational Optimization Models for Production Planning in a Supply Chain," Springer Books, Springer, edition 0, number 978-3-540-29879-3, November.
    9. Vairaktarakis, George L. & Cai, Xiaoqiang & Lee, Chung-Yee, 2002. "Workforce planning in synchronous production systems," European Journal of Operational Research, Elsevier, vol. 136(3), pages 551-572, February.
    10. El-Ghazali Talbi, 2016. "Combining metaheuristics with mathematical programming, constraint programming and machine learning," Annals of Operations Research, Springer, vol. 240(1), pages 171-215, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemi-Petroodi, S. Ehsan & Thevenin, Simon & Kovalev, Sergey & Dolgui, Alexandre, 2022. "Model-dependent task assignment in multi-manned mixed-model assembly lines with walking workers," Omega, Elsevier, vol. 113(C).
    2. Hashemi-Petroodi, S. Ehsan & Thevenin, Simon & Kovalev, Sergey & Dolgui, Alexandre, 2023. "Markov decision process for multi-manned mixed-model assembly lines with walking workers," International Journal of Production Economics, Elsevier, vol. 255(C).
    3. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delorme, Xavier & Dolgui, Alexandre & Kovalev, Sergey & Kovalyov, Mikhail Y., 2019. "Minimizing the number of workers in a paced mixed-model assembly line," European Journal of Operational Research, Elsevier, vol. 272(1), pages 188-194.
    2. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    3. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    4. Liu, Ling & Martín Barragán, Belén & Prieto Fernández, Francisco Javier, 2016. "A Partial parametric path algorithm for multiclass classification," DES - Working Papers. Statistics and Econometrics. WS 22390, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Zhaowei Miao & Feng Yang & Ke Fu & Dongsheng Xu, 2012. "Transshipment service through crossdocks with both soft and hard time windows," Annals of Operations Research, Springer, vol. 192(1), pages 21-47, January.
    6. Fowler, John W. & Wirojanagud, Pornsarun & Gel, Esma S., 2008. "Heuristics for workforce planning with worker differences," European Journal of Operational Research, Elsevier, vol. 190(3), pages 724-740, November.
    7. H-Y Lin & C-J Liao & C-T Tseng, 2011. "An application of variable neighbourhood search to hospital call scheduling of infant formula promotion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 949-959, June.
    8. Ade Irawan, Chandra & Starita, Stefano & Chan, Hing Kai & Eskandarpour, Majid & Reihaneh, Mohammad, 2023. "Routing in offshore wind farms: A multi-period location and maintenance problem with joint use of a service operation vessel and a safe transfer boat," European Journal of Operational Research, Elsevier, vol. 307(1), pages 328-350.
    9. Dolinskaya, Irina & Shi, Zhenyu (Edwin) & Smilowitz, Karen, 2018. "Adaptive orienteering problem with stochastic travel times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 1-19.
    10. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    11. Jonathan Oesterle & Lionel Amodeo & Farouk Yalaoui, 2019. "A comparative study of Multi-Objective Algorithms for the Assembly Line Balancing and Equipment Selection Problem under consideration of Product Design Alternatives," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1021-1046, March.
    12. Shandong Mou, 2022. "Integrated Order Picking and Multi-Skilled Picker Scheduling in Omni-Channel Retail Stores," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    13. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    14. Palubeckis, Gintaras & Tomkevičius, Arūnas & Ostreika, Armantas, 2019. "Hybridizing simulated annealing with variable neighborhood search for bipartite graph crossing minimization," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 84-101.
    15. Marinakis, Yannis & Migdalas, Athanasios & Sifaleras, Angelo, 2017. "A hybrid Particle Swarm Optimization – Variable Neighborhood Search algorithm for Constrained Shortest Path problems," European Journal of Operational Research, Elsevier, vol. 261(3), pages 819-834.
    16. Irawan, Chandra Ade & Salhi, Said & Scaparra, Maria Paola, 2014. "An adaptive multiphase approach for large unconditional and conditional p-median problems," European Journal of Operational Research, Elsevier, vol. 237(2), pages 590-605.
    17. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    18. Mesut Yavuz & Ismail Çapar, 2017. "Alternative-Fuel Vehicle Adoption in Service Fleets: Impact Evaluation Through Optimization Modeling," Transportation Science, INFORMS, vol. 51(2), pages 480-493, May.
    19. Ana Anokić & Zorica Stanimirović & Đorđe Stakić & Tatjana Davidović, 2021. "Metaheuristic approaches to a vehicle scheduling problem in sugar beet transportation," Operational Research, Springer, vol. 21(3), pages 2021-2053, September.
    20. Chandra Ade Irawan & Martino Luis & Said Salhi & Arif Imran, 2019. "The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 275(2), pages 367-392, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:24:y:2018:i:1:d:10.1007_s10732-017-9357-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.