IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i6d10.1057_jors.2010.42.html
   My bibliography  Save this article

An application of variable neighbourhood search to hospital call scheduling of infant formula promotion

Author

Listed:
  • H-Y Lin

    (National Taiwan University of Science and Technology)

  • C-J Liao

    (National Taiwan University of Science and Technology)

  • C-T Tseng

    (Chaoyang University of Technology)

Abstract

In the infant formula industry, products must rely on the prescription or recommendation from healthcare physicians (HCPs). Therefore, it is the most important activity in sales promotion to call on the identified HCPs in the prospected hospitals by the territory promotional sales representatives (PSRs). The PSRs have to establish their monthly hospital call schedule according to several constraints. In this paper, we investigate the hospital call scheduling of PSRs, a real-world case provided by an international infant formula company operating in Taiwan. The objective is minimising the total travel time. First, we present a four-phase heuristic to quickly generate a feasible schedule. We then apply a variable neighbourhood search incorporated with memory and revolver schemes to improve the solution quality. Through extensive computational experiments, it is shown that the proposed solution approaches are quite effective in terms of solution quality and computation time.

Suggested Citation

  • H-Y Lin & C-J Liao & C-T Tseng, 2011. "An application of variable neighbourhood search to hospital call scheduling of infant formula promotion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 949-959, June.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:6:d:10.1057_jors.2010.42
    DOI: 10.1057/jors.2010.42
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.42
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.42?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avanthay, Cedric & Hertz, Alain & Zufferey, Nicolas, 2003. "A variable neighborhood search for graph coloring," European Journal of Operational Research, Elsevier, vol. 151(2), pages 379-388, December.
    2. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    3. G Babin & S Deneault & G Laporte, 2007. "Improvements to the Or-opt heuristic for the symmetric travelling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 402-407, March.
    4. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ade Irawan, Chandra & Starita, Stefano & Chan, Hing Kai & Eskandarpour, Majid & Reihaneh, Mohammad, 2023. "Routing in offshore wind farms: A multi-period location and maintenance problem with joint use of a service operation vessel and a safe transfer boat," European Journal of Operational Research, Elsevier, vol. 307(1), pages 328-350.
    2. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    3. HERREMANS, Dorien & SÖRENSEN, Kenneth, 2012. "Composing Fifth Species Counterpoint Music With Variable Neighborhood Search," Working Papers 2012020, University of Antwerp, Faculty of Business and Economics.
    4. Marinakis, Yannis & Migdalas, Athanasios & Sifaleras, Angelo, 2017. "A hybrid Particle Swarm Optimization – Variable Neighborhood Search algorithm for Constrained Shortest Path problems," European Journal of Operational Research, Elsevier, vol. 261(3), pages 819-834.
    5. Irawan, Chandra Ade & Salhi, Said & Scaparra, Maria Paola, 2014. "An adaptive multiphase approach for large unconditional and conditional p-median problems," European Journal of Operational Research, Elsevier, vol. 237(2), pages 590-605.
    6. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    7. Liang, Yun-Chia & Chen, Yi-Ching, 2007. "Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 323-331.
    8. Irawan, Chandra Ade & Song, Xiang & Jones, Dylan & Akbari, Negar, 2017. "Layout optimisation for an installation port of an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 259(1), pages 67-83.
    9. Alexander Biele & Lars Mönch, 2018. "Hybrid approaches to optimize mixed-model assembly lines in low-volume manufacturing," Journal of Heuristics, Springer, vol. 24(1), pages 49-81, February.
    10. Gintaras Palubeckis, 2020. "An Approach Integrating Simulated Annealing and Variable Neighborhood Search for the Bidirectional Loop Layout Problem," Mathematics, MDPI, vol. 9(1), pages 1-30, December.
    11. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    12. Santi, Éverton & Aloise, Daniel & Blanchard, Simon J., 2016. "A model for clustering data from heterogeneous dissimilarities," European Journal of Operational Research, Elsevier, vol. 253(3), pages 659-672.
    13. Kuhn, Heinrich & Schubert, Daniel & Holzapfel, Andreas, 2021. "Integrated order batching and vehicle routing operations in grocery retail – A General Adaptive Large Neighborhood Search algorithm," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1003-1021.
    14. Todosijević, Raca & Benmansour, Rachid & Hanafi, Saïd & Mladenović, Nenad & Artiba, Abdelhakim, 2016. "Nested general variable neighborhood search for the periodic maintenance problem," European Journal of Operational Research, Elsevier, vol. 252(2), pages 385-396.
    15. Liu, Ling & Martín Barragán, Belén & Prieto Fernández, Francisco Javier, 2016. "A Partial parametric path algorithm for multiclass classification," DES - Working Papers. Statistics and Econometrics. WS 22390, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Zhaowei Miao & Feng Yang & Ke Fu & Dongsheng Xu, 2012. "Transshipment service through crossdocks with both soft and hard time windows," Annals of Operations Research, Springer, vol. 192(1), pages 21-47, January.
    17. Dolinskaya, Irina & Shi, Zhenyu (Edwin) & Smilowitz, Karen, 2018. "Adaptive orienteering problem with stochastic travel times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 1-19.
    18. Shandong Mou, 2022. "Integrated Order Picking and Multi-Skilled Picker Scheduling in Omni-Channel Retail Stores," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    19. Palubeckis, Gintaras & Tomkevičius, Arūnas & Ostreika, Armantas, 2019. "Hybridizing simulated annealing with variable neighborhood search for bipartite graph crossing minimization," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 84-101.
    20. VÁZQUEZ-ALCOCER, Alan & GOOS, Peter & SCHOEN, Eric D., 2016. "Two-level designs constructed by concatenating orthogonal arrays of strenght three," Working Papers 2016011, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:6:d:10.1057_jors.2010.42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.