IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v43y2022i5d10.1007_s10878-020-00663-4.html
   My bibliography  Save this article

A traffic congestion analysis by user equilibrium and system optimum with incomplete information

Author

Listed:
  • Qiang Zhang

    (Fuzhou University)

  • Shi Qiang Liu

    (Fuzhou University)

  • Mahmoud Masoud

    (Queensland University of Technology)

Abstract

Nowadays, the rapid development of intelligent navigation systems has profound impacts on the routing of traffic users. With the assistance of these intelligent navigation systems, traffic users can obtain more accurate information about a traffic network such as traffic capacities, feasible paths, congestion status, etc. In this paper, we focus on a game-theory-based traffic congestion analysis model which considers incomplete traffic information (e.g., variabilities of path information) generated by intelligent navigation systems. The variabilities of path information are treated as incomplete information associated with different subsets of arcs. We adopt the notions of user equilibrium with incomplete information (UEII) and system optimum with incomplete information (SOII) in this study. Based on these two new notions, we extend two classical theorems and combine them into a new model to analyze the relationship between UEII and SOII. Finally, numerical cases are given to illustrate the implication of UEII and SOII in practical implementations.

Suggested Citation

  • Qiang Zhang & Shi Qiang Liu & Mahmoud Masoud, 2022. "A traffic congestion analysis by user equilibrium and system optimum with incomplete information," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1391-1404, July.
  • Handle: RePEc:spr:jcomop:v:43:y:2022:i:5:d:10.1007_s10878-020-00663-4
    DOI: 10.1007/s10878-020-00663-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00663-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00663-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bagloee, Saeed Asadi & Sarvi, Majid & Wallace, Mark, 2016. "Bicycle lane priority: Promoting bicycle as a green mode even in congested urban area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 102-121.
    2. Dafermos, Stella & Nagurney, Anna, 1984. "On some traffic equilibrium theory paradoxes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 101-110, April.
    3. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2004. "Selfish Routing in Capacitated Networks," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 961-976, November.
    4. Yang, Hai & Xu, Wei & Heydecker, Benjamin, 2010. "Bounding the efficiency of road pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 90-108, January.
    5. Roughgarden, Tim & Tardos, Eva, 2004. "Bounding the inefficiency of equilibria in nonatomic congestion games," Games and Economic Behavior, Elsevier, vol. 47(2), pages 389-403, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Zhang & Shi Qiang Liu & Andrea D’Ariano, 2023. "Bi-objective bi-level optimization for integrating lane-level closure and reversal in redesigning transportation networks," Operational Research, Springer, vol. 23(2), pages 1-51, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Zengzhe & Gao, Ziyou & Sun, Huijun, 2014. "Bounding the inefficiency of atomic splittable selfish traffic equilibria with elastic demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 31-43.
    2. José R. Correa & Nicolás Figueroa & Nicolás E. Stier-Moses, 2008. "Pricing with markups in industries with increasing marginal costs," Documentos de Trabajo 256, Centro de Economía Aplicada, Universidad de Chile.
    3. Gaëtan Fournier & Marco Scarsini, 2014. "Hotelling Games on Networks: Efficiency of Equilibria," Documents de travail du Centre d'Economie de la Sorbonne 14033, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    4. Roberto Cominetti & José R. Correa & Nicolás E. Stier-Moses, 2009. "The Impact of Oligopolistic Competition in Networks," Operations Research, INFORMS, vol. 57(6), pages 1421-1437, December.
    5. Marco Scarsini & Tristan Tomala, 2012. "Repeated congestion games with bounded rationality," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 651-669, August.
    6. Knight, Vincent A. & Harper, Paul R., 2013. "Selfish routing in public services," European Journal of Operational Research, Elsevier, vol. 230(1), pages 122-132.
    7. Zijun Wu & Rolf H. Moehring & Chunying Ren & Dachuan Xu, 2020. "A convergence analysis of the price of anarchy in atomic congestion games," Papers 2007.14769, arXiv.org, revised Dec 2021.
    8. Chenlan Wang & Xuan Vinh Doan & Bo Chen, 2022. "Atomic congestion games with random players: network equilibrium and the price of anarchy," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 2123-2142, October.
    9. Liu, Tian-Liang & Chen, Jian & Huang, Hai-Jun, 2011. "Existence and efficiency of oligopoly equilibrium under toll and capacity competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 908-919.
    10. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    11. Milchtaich, Igal, 2006. "Network topology and the efficiency of equilibrium," Games and Economic Behavior, Elsevier, vol. 57(2), pages 321-346, November.
    12. Raimondo, Roberto, 2020. "Pathwise smooth splittable congestion games and inefficiency," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 15-23.
    13. Correa, José R. & Schulz, Andreas S. & Stier-Moses, Nicolás E., 2008. "A geometric approach to the price of anarchy in nonatomic congestion games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 457-469, November.
    14. Jonathan Kluberg & Georgia Perakis, 2012. "Generalized Quantity Competition for Multiple Products and Loss of Efficiency," Operations Research, INFORMS, vol. 60(2), pages 335-350, April.
    15. Zijun Wu & Rolf H. Möhring & Yanyan Chen & Dachuan Xu, 2021. "Selfishness Need Not Be Bad," Operations Research, INFORMS, vol. 69(2), pages 410-435, March.
    16. Roughgarden, Tim & Schoppmann, Florian, 2015. "Local smoothness and the price of anarchy in splittable congestion games," Journal of Economic Theory, Elsevier, vol. 156(C), pages 317-342.
    17. Wang, Chenlan & Doan, Xuan Vinh & Chen, Bo, 2014. "Price of anarchy for non-atomic congestion games with stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 90-111.
    18. Elodie Adida & Georgia Perakis, 2014. "The effect of supplier capacity on the supply chain profit," Annals of Operations Research, Springer, vol. 223(1), pages 1-52, December.
    19. Haoning Xi & Liu He & Yi Zhang & Zhen Wang, 2020. "Bounding the efficiency gain of differentiable road pricing for EVs and GVs to manage congestion and emissions," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-36, July.
    20. Guo, Xiaolei & Yang, Hai & Liu, Tian-Liang, 2010. "Bounding the inefficiency of logit-based stochastic user equilibrium," European Journal of Operational Research, Elsevier, vol. 201(2), pages 463-469, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:43:y:2022:i:5:d:10.1007_s10878-020-00663-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.