Advanced Search
MyIDEAS: Login to save this paper or follow this series

Pricing with markups in industries with increasing marginal costs

Contents:

Author Info

  • José R. Correa
  • Nicolás Figueroa
  • Nicolás E. Stier-Moses

    ()

Abstract

We study a game that models a market in which heterogeneous producers of perfect substitutes make pricing decisions in a first stage, followed by consumers that select a producer that sells at lowest price. As opposed to Cournot or Bertrand competition, producers submit a price function to the market, which maps their production level to a price. Solutions of this type of models are normally referred to as supply function equilibria, and the most common application is in electricity markets. In our model, producers face increasing marginal production costs and, in addition, cost functions are proportional to each other, and their magnitude depend on the efficiency of each particular producer. In this context, we prove necessary and sufficient conditions for the existence of equilibria in which producers use supply functions that replicate their cost structure. We then specialize the model to monomial cost functions with exponent equal to q > 0, which allows us to reinterpret the simple supply functions as a markup charged on top of the production cost. We prove that an equilibrium for the markups exists if and only if the number of producers in the market is strictly larger than 1 + q, and if an equilibrium exists, it is unique. The main result for monomial cost functions is to establish that the equilibrium is nearly efficient when the market is competitive. Here, an efficient assignment is one that minimizes the total production cost, ignoring payments because they are transfers within the system. The result holds because when there is enough competition, markups are bounded, thus preventing prices to be significantly distorted from costs. Finally, we focus on the case when unit costs are linear functions on the production quantities. This simplification allows us to refine the previous bound by establishing an almost tight bound on the worst-case inefficiency of an equilibrium. This bound is a subproduct of an algorithm that we design to find such equilibrium. The bound states that when there are two equally-efficient producers and possibly other less efficient ones, the production cost under an equilibrium is at most 50 percent worse than the optimal one, and the worst-case gap between the two assignments decreases rapidly as competition increases. For instance, for three similarly-efficient producers plus perhaps other less efficient ones, the inefficiency is below 6.2 percent. JEL Classification. C61, C72, D43, L11, Q41.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.dii.uchile.cl/~cea/sitedev/cea/www/download.php?file=documentos_trabajo/ASOCFILE120081224004455.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Centro de Economía Aplicada, Universidad de Chile in its series Documentos de Trabajo with number 256.

as in new window
Length:
Date of creation: 2008
Date of revision:
Handle: RePEc:edj:ceauch:256

Contact details of provider:
Web page: http://www.dii.uchile.cl/cea/
More information through EDIRC

Related research

Keywords:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Klemperer, Paul D & Meyer, Margaret A, 1989. "Supply Function Equilibria in Oligopoly under Uncertainty," Econometrica, Econometric Society, vol. 57(6), pages 1243-77, November.
  2. Wichiensin, Muanmas & Bell, Michael G.H. & Yang, Hai, 2007. "Impact of congestion charging on the transit market: An inter-modal equilibrium model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 703-713, August.
  3. Engel Eduardo M & Fischer Ronald & Galetovic Alexander, 2004. "Toll Competition Among Congested Roads," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-21, March.
  4. Acemoglu, Daron & Bimpikis, Kostas & Ozdaglar, Asuman, 2009. "Price and capacity competition," Games and Economic Behavior, Elsevier, vol. 66(1), pages 1-26, May.
  5. Ross Baldick & Ryan Grant & Edward Kahn, 2004. "Theory and Application of Linear Supply Function Equilibrium in Electricity Markets," Journal of Regulatory Economics, Springer, vol. 25(2), pages 143-167, 03.
  6. Ugur Akgün, 2004. "Mergers With Supply Functions," Journal of Industrial Economics, Wiley Blackwell, vol. 52(4), pages 535-546, December.
  7. Turnbull, Stephen J., 1983. "Choosing duopoly solutions by consistent conjectures and by uncertainty," Economics Letters, Elsevier, vol. 13(2-3), pages 253-258.
  8. Correa, José R. & Schulz, Andreas S. & Stier-Moses, Nicolás E., 2008. "A geometric approach to the price of anarchy in nonatomic congestion games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 457-469, November.
  9. Correa, Jose R. & Schulz, Andreas S. & Stier Moses, Nicolas E., 2003. "Selfish Routing in Capacitated Networks," Working papers 4319-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
  10. Roughgarden, Tim & Tardos, Eva, 2004. "Bounding the inefficiency of equilibria in nonatomic congestion games," Games and Economic Behavior, Elsevier, vol. 47(2), pages 389-403, May.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Patrick MAILLÉ & Bruno Tuffin, 2011. "Competition among providers in loss networks," Post-Print hal-00724665, HAL.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:edj:ceauch:256. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.