IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v38y2021i1d10.1007_s00357-020-09369-y.html
   My bibliography  Save this article

Gaussian-Based Visualization of Gaussian and Non-Gaussian-Based Clustering

Author

Listed:
  • Christophe Biernacki

    (Inria, Université de Lille, CNRS - Laboratoire de mathématiques Painlevé)

  • Matthieu Marbac

    (Univ. Rennes, Ensai, CNRS, CREST - UMR 9194)

  • Vincent Vandewalle

    (Inria, Université de Lille - ULR 2694 Equipe Metrics)

Abstract

A generic method is introduced to visualize in a “Gaussian-like way,” and onto ℝ 2 $\mathbb {R}^{2}$ , results of Gaussian or non-Gaussian–based clustering. The key point is to explicitly force a visualization based on a spherical Gaussian mixture to inherit from the within cluster overlap that is present in the initial clustering mixture. The result is a particularly user-friendly drawing of the clusters, providing any practitioner with an overview of the potentially complex clustering result. An entropic measure provides information about the quality of the drawn overlap compared with the true one in the initial space. The proposed method is illustrated on four real data sets of different types (categorical, mixed, functional, and network) and is implemented on the r package ClusVis.

Suggested Citation

  • Christophe Biernacki & Matthieu Marbac & Vincent Vandewalle, 2021. "Gaussian-Based Visualization of Gaussian and Non-Gaussian-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 129-157, April.
  • Handle: RePEc:spr:jclass:v:38:y:2021:i:1:d:10.1007_s00357-020-09369-y
    DOI: 10.1007/s00357-020-09369-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-020-09369-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-020-09369-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthieu Marbac & Christophe Biernacki & Vincent Vandewalle, 2017. "Model-based clustering of Gaussian copulas for mixed data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(23), pages 11635-11656, December.
    2. Marie Chavent & Vanessa Kuentz-Simonet & Jérôme Saracco, 2012. "Orthogonal rotation in PCAMIX," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 131-146, July.
    3. Matthieu Marbac & Christophe Biernacki & Vincent Vandewalle, 2016. "Latent class model with conditional dependency per modes to cluster categorical data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 183-207, June.
    4. Katherine Morris & Paul McNicholas & Luca Scrucca, 2013. "Dimension reduction for model-based clustering via mixtures of multivariate $$t$$ t -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 321-338, September.
    5. Hathaway, Richard J., 1986. "Another interpretation of the EM algorithm for mixture distributions," Statistics & Probability Letters, Elsevier, vol. 4(2), pages 53-56, March.
    6. Mazo, Gildas, 2017. "A Semiparametric and Location-Shift Copula-Based Mixture Model," LIDAM Reprints ISBA 2017043, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    8. Allou Samé & Faicel Chamroukhi & Gérard Govaert & Patrice Aknin, 2011. "Model-based clustering and segmentation of time series with changes in regime," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 301-321, December.
    9. Damien McParland & Isobel Claire Gormley, 2016. "Model based clustering for mixed data: clustMD," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 155-169, June.
    10. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    11. Christophe Ambroise & Catherine Matias, 2012. "New consistent and asymptotically normal parameter estimates for random‐graph mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 3-35, January.
    12. Gildas Mazo, 2017. "A Semiparametric and Location-Shift Copula-Based Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 444-464, October.
    13. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    14. Moustaki, Irini & Papageorgiou, Ioulia, 2005. "Latent class models for mixed variables with applications in Archaeometry," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 659-675, March.
    15. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    16. Julie Josse & Marie Chavent & Benot Liquet & François Husson, 2012. "Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis," Journal of Classification, Springer;The Classification Society, vol. 29(1), pages 91-116, April.
    17. Kehui Chen & Jing Lei, 2015. "Localized Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1266-1275, September.
    18. Charles Bouveyron & Julien Jacques, 2011. "Model-based clustering of time series in group-specific functional subspaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 281-300, December.
    19. Christian Hennig, 2010. "Methods for merging Gaussian mixture components," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(1), pages 3-34, April.
    20. Gilles Celeux & Gérard Govaert, 1991. "Clustering criteria for discrete data and latent class models," Journal of Classification, Springer;The Classification Society, vol. 8(2), pages 157-176, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazo, Gildas & Averyanov, Yaroslav, 2019. "Constraining kernel estimators in semiparametric copula mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 170-189.
    2. Christophe Biernacki & Alexandre Lourme, 2019. "Unifying data units and models in (co-)clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 7-31, March.
    3. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    4. Semhar Michael & Volodymyr Melnykov, 2016. "An effective strategy for initializing the EM algorithm in finite mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 563-583, December.
    5. Marek Śmieja & Magdalena Wiercioch, 2017. "Constrained clustering with a complex cluster structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 493-518, September.
    6. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    7. Selosse, Margot & Jacques, Julien & Biernacki, Christophe, 2020. "Model-based co-clustering for mixed type data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    9. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    10. Adriano Zanin Zambom & Julian A. A. Collazos & Ronaldo Dias, 2019. "Functional data clustering via hypothesis testing k-means," Computational Statistics, Springer, vol. 34(2), pages 527-549, June.
    11. Paul Koster & Hans Koster, 2013. "Commuters' Preferences for Fast and Reliable Travel," Tinbergen Institute Discussion Papers 13-075/VIII, Tinbergen Institute, revised 30 Apr 2015.
    12. Koster, Paul R. & Koster, Hans R.A., 2015. "Commuters’ preferences for fast and reliable travel: A semi-parametric estimation approach," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 289-301.
    13. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    14. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    15. Rhoden, Imke & Weller, Daniel & Voit, Ann-Katrin, 2021. "Spatio-temporal dynamics of European innovation: An exploratory approach via multivariate functional data cluster analysis," Ruhr Economic Papers 926, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    16. Cristina Tortora & Paul D. McNicholas & Ryan P. Browne, 2016. "A mixture of generalized hyperbolic factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 423-440, December.
    17. Hunt, Lynette A. & Basford, Kaye E., 2016. "Comparing classical criteria for selecting intra-class correlated features in Multimix," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 350-366.
    18. Keefe Murphy & Thomas Brendan Murphy, 2020. "Gaussian parsimonious clustering models with covariates and a noise component," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 293-325, June.
    19. Amovin-Assagba, Martial & Gannaz, Irène & Jacques, Julien, 2022. "Outlier detection in multivariate functional data through a contaminated mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    20. Govaert, Gérard & Nadif, Mohamed, 2008. "Block clustering with Bernoulli mixture models: Comparison of different approaches," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3233-3245, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:38:y:2021:i:1:d:10.1007_s00357-020-09369-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.